
Prime Computet, Inc.
Reference Guide FDR3056-101B

COBOL

r

r

r

r

Update Package
COR3056-002

for
COBOL Reference Guide, FDR3056

July 1982
This Update Package, COR3056-002. is Update 2 for the January 1980 Edition of the
COBOL Reference Guide, FDR3056. This package contains 13 pages. A list of effective
pages appears on the back of this page.
These pages update this book to Master Disk Revision 19.0. All pages with changes are
dated July 1982 at the bottom.
Changes made to the text since the last printing are identified by vertical bars in the mar
gin. Bars with numbers indicate technical changes for a specific revision. Those without
numbers indicate rewrites for clarification or additional information. (Revision 18.3 up
date pages are available in a separate package, COR3056-001.)

Copyright © 1982 by Prime Computer, Incorporated
Technical Publications Department
500 Old Connecticut Path
Framingham, MA 01701

The information contained on these update pages is subject to change without notice and
should not be construed as a commitment by Prime Computer Corporation. Prime
Computer Corporation assumes no responsibility for any errors that may appear in this
package.
PRIME and PRIMOS are registered trademarks of Prime Computer. PRIMENET, RINGNET,
and THE PROGRAMMER'S COMPANION are trademarks of Prime Computer, Inc.
All correspondence on suggested changes to this document should be addressed to:

Anne Ladd
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

-

Update Package, COR3056-002

(Pages with changes, enclosed with
this package, are shown in rust.)

Effective Pages for the COBOL Reference Guide as of Revision 19.0

Pages
Title Page
i to iv
v to xi
1-1 to 1-4
1-5 to 1-7
2-1 to 2-9
3-1
3-2 to 3-4
4-1 to 4-25
5-1 to 5-2
6-1 to 6-7
7-1 to 7-2
7-3 to 7-4
7-5 to 7-32
8-1 to 8-4
8-5 to 8-8
8-9 to 8-10
8-11 to 8-56
9-1 to 9-2
9-3 to 9-5
10-1 to 10-12
11-1 toll-9
12-1 to 12-9
13-1 to 13-6
A-1
B-l to B-2
B-3

Revision Pages Revision

19.0 C-l to C-4 17.2

17.2
18.3

C-5 to C-6
C-6A to C-8

18.3
18.3

17.2
18.3

C-9 to C-10
D-l to D-3

17.2
17.2

18.3 E-1 toE-6A 18.3

19.0
18.3

E-7
F-l to F-6

17.2
17.2

17.2 C-l to G-3 17.2

17.2 H-l to H-2 19.0

17.2 X-l toX-7 18.3

17.2
19.0
17.2

17.2
18.3
19.0
17.2
18.3
17.2
17.2
17.2
17.2
17.2
17.2

19.0
17.2

' " ■

-

A IDUS
Change sheet package

This is your AIDUS change sheet package for FDR3056, The COBOL Reference
Guide. It contains replacement pages to update your book to Master Disk Revi
sion 18 and 18.3.
Two types of changes are indicated on these change pages: changes specific to
Revision 18, and other changes (errors fixed, information missing at Revision
17 or earlier, or editorial changes). Both are shown by a simple bar in the mar
gin. All pages with changes of either type are now dated 1 September 1981 in the
folio line.

Change Sheet Package Number: COR 3056-001
Date: September 1981
Revision Number: 18 and 18.3
Number of Pages Enclosed: 51 Pages with Changes: 50
List of pages enclosed (pages with changes are underlined): v, vi, vii, viii, ix, xi, 14|, Jd2.
1-7, 2-1 through 2-9, 5-1 through 5-4, 8-5 through 8-8, 9-1, 9-2,
B-l, B-2, C-5 through C-8, E-1 throughE-6A, X-l through X-7

Copyright © 1982 by Prime Computer, Incorporated
Technical Publications Department
500 Old Connecticut Path
Framingham, MA 01701
The information contained on these change pages is subject to change without notice and
should not be construed as a commitment by Prime Computer, Incorporated. Prime
Computer, Incorporated assumes no responsibility for any errors that may appear in this
package.
PRIME and PRIMOS are registered trademarks of Prime Computer.
PRIMENET and THE PROGRAMMER'S COMPANION are trademarks of Prime Computer.
Printing date: February 1982
All correspondence on suggested changes to this document should be addressed to:

Anne Ladd
Technical Publications Department
Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701

The COBOL Reference Guide

Published by Prime Computer, Inc.
Technical Publications Department
500 Old Connecticut Path
Framingham, Massachusetts 01701
Copyright © 1980 by Prime Computer
Printed in USA. All rights reserved.

The information contained in this document is subject to
change without notice and should not be construed as a
commitment by Prime Computer, Incorporated. Prime
Computer assumes no responsibility for any errors that
may appear in this document.
First printing, January 1980
Production information: This book was composed in 10
and 11 point Melior and 10 point Helvetica by Allied
Systems. The covers were printed in 0 colors by
MacDonald & Evans with separations by Spectrum. The
cover stock was 100# Warren LOE Gloss Cover. The text
was printed in 2 colors by Federated Lithographers. The
text stock was 50# Mohawk Vellum, Creme White.
Layout and design was by William Agush of Prime
Computer.

COBOL a
Reference Guide

bv Grace T. Xa

with Update Pages for Iter. 10. July HW2

bv Anne Lathi

COPYRIGHT INFORMATION

The information in this document is subject to change without notice and should not be
construed as a commitment by Prime Computer Corporation. Prime Computer Corpora
tion assumes no responsibility for any errors that may appear in this document.
The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license.

Copyright © 1982 by
Prime Computer, Incorporated

500 Old Connecticut Path
Framingham, Massachusetts 01701

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.

PRIMENET, RINGNET, and THE PROGRAMMER'S COMPANION are trademarks of Prime
Computer, Inc.

PRINTING HISTORY - COBOL Reference Guide

Edition

"First Edition
Update
"Second Edition
"Third Edition
Fourth Edition
Update Package 1
Update Package 2

Date

November 1977
July 1978
September 1978
May 1979
January 1980
September 1981
Tulv 1982

Number Documents Rev

PDR3056 14
PTU2600-048 15
PDR3056 15
PDR3056 16.3
FDR3056 17.2
COR3056-001 18.3
COR3056-002 19.0

"These editions are out of print.

HOW TO ORDER TECHNICAL DOCUMENTS

U.S. Customers
Software Distribution
Prime Computer, Inc.
1 New York Ave.
Framingham, MA 01701
(617) 879-2960 x2053, 2054

Customers Outside U.S.
Contact your local Prime
subsidiary or distributor.

Prime Employees
Communications Services
MS 15-13, Prime Park
Natick, MA 01760
(617) 655-8000, X4837

INFORMATION Systems
Contact your Prime
INFORMATION system dealer.

ACKNOWLEDGMENT ix

PRIME DOCUMENTATION CONVENTIONS xi

PART I — OVERVIEW

1 OVERVIEW OF PRIMES COBOL
This Document 1-1
Related Document 1-2
Language Specifications 1-2
Prime Extensions to the Level 2 Standard 1-4
COBOL Under PRIMOS 1-4
Program Environments 1-5
System Resources Supporting COBOL 1-6

PART II — LANGUAGE-SPECIFIC SYSTEM INFORMATION

2 COMPILING THE PROGRAM
Introduction 2-1
Using the Compiler 2-1
Compiler Options 2-4
COBOL Files 2-7

LOADING AND EXECUTING PROGRAMS
Loading and Executing Programs 3-1
Loading Programs 3-1
Executing Loaded Programs — Runtime 3-2

PART III — COBOL LANGUAGE REFERENCE

4 FUNDAMENTAL CONCEPTS OF COBOL
Divisions of a COBOL Program: A Summary 4-1
Language Considerations 4-4
Language Specifications 4-7
Arithmetic Expressions 4-18
Conditional Expressions 4-20

5 IDENTIFICATION DIVISION
Identification Division 5-1

ENVIRONMENT DIVISION
Environment Division 6-1

1 S e p t e m b e r 1 9 8 1 V F D R 3 0 5 6

DATA DIVISION
Data Division 7-1
FILE SECTION 7-2
File Description 7-2
UNCOMPRESSED 7-3
LABEL RECORDS 7-4
BLOCK CONTAINS 7-4
RECORD CONTAINS 7-5
VALUE OF FILE-ID 7-6
OWNER IS 7-6
DATA RECORDS 7-6
CODE-SET 7-7
RECORD DESCRIPTION 7-7
LEVEL-NUMBER 7-10
DATA-NAME/FILLER 7-12
REDEFINES 7-12
RENAMES 7-13
OCCURS 7-14
PICTURE 7-15
USAGE 7-22
SIGN 7-23
SYNCHRONIZED 7-24
JUSTIFIED 7-25
BLANK WHEN ZERO 7-25
VALUE 7-27
WORKING-STORAGE SECTION
LINKAGE SECTION 7-30

7-28

8 PROCEDURE DIVISION
Procedure Division 8-1
Procedure Statements 8-4
ACCEPT 8-4
ADD 8-6
ALTER 8-7
CALL 8-8
CLOSE 8-8
COMPUTE 8-9
COPY 8-9
DELETE 8-11
DISPLAY 8-12
DIVIDE 8-12
ENTER 8-14
EXHIBIT 8-14
EXIT 8-15
EXIT PROGRAM 8-15
GOTO 8-15
IF 8-16
INSPECT 8-19
MOVE 8-22
MULTIPLY 8-23
OPEN 8-23
PERFORM 8-24
READ 8-32

FDR3056 VI 1 September 1981

r 10

READY TRACE 8-34
RELEASE 8-34
RESET TRACE 8-34
RETURN 8-35
REWRITE 8-35
SEARCH 8-36
SET 8-37
SORT 8-38
START 8-39
STOP 8-40
STRING 8-40
SUBTRACT 8-42
UNSTRING 8-44
USE 8-48
WRITE 8-49

9 INTER-PROGRAM COMMUNICATION
Definition 9-1
LINKAGE SECTION 9-1
PROCEDURE DIVISION USING
CALL 9-2
EXIT PROGRAM 9-3
ENTER 9-3

TABLE HANDLING
Definition 10-1
Data Division 10-1
OCCURS 10-1
Procedure Division 10-7
SET 10-7
SEARCH 10-9

9-2

- 11 SORT MODULE
Definition 11-1
Data Division 11-1
Procedure Division 11-2
RELEASE 11-2
RETURN 11-2
SORT 11-3

12 INDEXED SEQUENTIAL FILES
Definition 12-1
File Control 12-1
Procedure Division 12-3
CLOSE 12-3
DELETE 12-3
OPEN 12-4
READ 12-4
REWRITE 12-6
START 12-6
WRITE 12-9

1 September 1981 V l l FDR3056

FDR3056

RELATIVE FILE PROCESSING
Definition 13-1
File Control 13-1
Procedure Division 13-2
CLOSE 13-3
DELETE 13-3
OPEN 13-3
READ 13-3
REWRITE 13-5
START 13-5
WRITE 13-6

APPENDICES

FILE ORGANIZATION
Access Methods A-1

CREATING INDEXED AND DAM FILES: THE MIDAS TEMPLATE
Dialog for INDEXED File B-l
Dialog for DAM File B-3

REFERENCE TABLES
What Is in This Appendix C-l

COBOL SYMBOLS

ERROR MESSAGES
Types of Error Messages E-1
Compile-time Error Messages E-1
D-level Error Messages E-5
Compile-time Warning Messages E-5
Runtime Error Messages E-7

EXPANDED LISTING
Expanded Listing F-l

LABEL COMMAND
Overview of Label G-l
Using Label G-l
Errors Using Label G-2
Help Facility G-3

COBOL SYSTEM FILES
S y s t e m F i l e s H - l ^ f e

INDEX
Index-l

v i i j 1 S e p t e m b e r 1 9 8 1

ACKNOWLEDGMENT

The following acknowledgment is a reprint from the American National Standard Program
ming Language COBOL, ANSI X3.23-1974:
"Any organization interested in reproducing the COBOL standard and specifications in whole
or in part, using ideas from this document as the basis for an instruction manual or for any
other purpose, is free to do so. However, all such organizations are requested to reproduce the
following acknowledgment paragraphs in their entirety as part of the preface to any such
publication (any organization using a short passage from this document, such as in a book
review, is requested to mention 'COBOL' in acknowledgment of the source, but need not quote
the acknowledgment):
COBOL is an industry language and is not the property of any company or group of companies,
or of any organization or group of organizations.
No warranty, expressed or implied, is made by any contributor or by the CODASYL Program
ming Language Committee as to the accuracy and functioning of the programming system and
language. Moreover, no responsibility is assumed by any contributor, or by the committee, in
connection therewith.
The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the
UNIVAC® I and II, Data Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, DSI 27A5260-2760. copyrighted by
Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL specifi
cations. Such authorization extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications."

1 J a n u a r y 1 9 8 0 i x F D R 3 0 5 6

PRIME DOCUMENTATION CONVENTIONS

Various conventions are used in the following sections.

Conventions in Examples
In all examples involving dialog between the user and the system, the user's input is rust-
colored, and the system's output is not:

OK, attach mydirec
OK, ed oldfile
EDIT

However, examples consisting only of COBOL statements, and no dialog with the system, are
shown in brown:

ID DIVISION.
PROGRAM-ID. EXAMPLE.
ENVIRCNMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 N PIC X(23) VALUE IS 'This is an example1.
PROCEDURE DIVISION.
PARA-1.

DISPLAY N.
STOP RUN.

'

Prime Typographical Conventions
UPPERCASE Capital letters identify command words or keywords. They are

to be entered literally.

lowercase Lowercase letters identify options or arguments. The user
substitutes an appropriate numerical or text value.

Brackets [] Brackets indicate that the item enclosed is optional.
Braces j ! Braces indicate a choice of options or arguments. Unless the

braces are enclosed by brackets, one choice must be selected.
Parentheses () When parentheses appear in a statement format, they must be

included literally when the statement is used.

Ellipsis .. . An ellipsis indicates that the preceding item may be repeated.
(CR) The letters CR in parentheses indicate a carriage return.

ANSI COBOL Conventions
In COBOL formats, the ANSI format notation presented in Section 4 is used.

1 September 1981 XI FDR 3056

ACKNOWLEDGMENT

The following acknowledgment is a reprint from the American National Standard Program
ming Language COBOL, ANSI X3.23-1974:
'Any organization interested in reproducing the COBOL standard and specifications in whole
or in part, using ideas from this document as the basis for an instruction manual or for any
other purpose, is free to do so. However, all such organizations are requested to reproduce the
following acknowledgment paragraphs in their entirety as part of the preface to any such
publication (any organization using a short passage from this document, such as in a book
review, is requested to mention 'COBOL' in acknowledgment of the source, but need not quote
the acknowledgment):
COBOL is an industry language and is not the property of any company or group of companies,
or of any organization or group of organizations.
No warranty, expressed or implied, is made by any contributor or by the CODASYL Program
ming Language Committee as to the accuracy and functioning of the programming system and
language. Moreover, no responsibility is assumed by any contributor, or by the committee, in
connection therewith.
The authors and copyright holders of the copyrighted material used herein

FLOW-MATIC (trademark of Sperry Rand Corporation), Programming for the
UNIVAC® I and II, Data Automation Systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM Commercial Translator Form No. F 28-8013,
copyrighted 1959 by IBM; FACT, DSI 27A5260-2760, copyrighted by
Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL specifi
cations. Such authorization extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications."

OVERVIEW

S-.

Overview of
Primed COBOL x

'

~

THIS DOCUMENT

Purpose and audience
The COBOL Reference Guide is a Final Documentation Release at software revision level 17
(Rev. 17). This document and a companion document, The Prime User's Guide, replace the
COBOL Programmer's Guide PDR3056 Rev. B.
This document fully describes Prime COBOL, and provides the necessary information for
compiling, loading, executing and debugging COBOL programs on a Prime system. It is
designed to be used as a reference guide for an experienced COBOL programmer. Users
unfamiliar with the language should read one of the many commercially available instruc
tion books; examples are:

Feingold, Carl, Fundamentals of Structured COBOL programming, WM. C. Brown
Company Publishers
Stern, N. and Stern, R., COBOL Programming, John Wiley and Son, Inc.r Organization and usage

This document has three major parts:
Part one Overview. Introduces Prime's COBOL, including Prime extensions

to the language, supporting utilities, systems and software (Section
1).

Part two Language-Specific System Information. Provides complete in
formation on the use of the COBOL compiler (Section 2). and
describes the process of loading and executing COBOL programs
(Section 3).

Part three Language Reference. Provides syntactical and general COBOL
specifications, patterned after the ANSI standard. The three main
sub-divisions are:

Fundamental Concepts of COBOL (Section 4)
Nucleus (Sections 5-8)
Functional Processing Modules (Sections 9-13)

Fundamental Concepts of COBOL defines the Nucleus and Func
tional Processing Modules. The Nucleus presents the structure and
governing rules of COBOL's four divisions: Identification. En
vironment, Data and Procedure. The Functional Processing Mod
ules include Inter-program Communication, Table Handling, Sort,
Indexed I/O, Relative I/O, Sequential I/O, and Library.
Effective usage of the Language Reference sections requires
knowledge of its organization:

• Fundamental Concepts begins with a generalized COBOL
program summary. This is expanded in the sample listing
file, SAMPLE. Fundamental COBOL concepts, including

1 J a n u a r y 1 9 8 0 1 - 1 F D R 3 0 5 6

1 OVERVIEW OF PRIME'S COBOL

standard format notation, punctuation rules, etc. are here ij
set forth.

• The Nucleus expands upon the previous presentation of
Fundamental Concepts. It provides detailed information
related to the Identification, Environment, Data, and Pro
cedure Divisions.
PROCEDURE DIVISION (Section 8) presents COBOL
verbs alphabetically. A quick verb index is in Appendix C.
Each division section closes with an example of source
coding for that given division. These examples form a
functional program, REF2, which illustrates the interrela
tionship of component parts.

• Functional Processing Modules are self-contained, often
restating concepts, data descriptions, and COBOL
statement formats elsewhere described. The reader will
find here all related data in a single location for maximum -^
utility and efficiency. For example, the READ verb is
presented in the Procedure Division. It is restated in the
Indexed I/O Functional Processing Module, together with
related data pertinent to Indexed I/O processing.

In addition to the body of text, the Table of Contents is a guide to content and order; the
index provides the most direct access to specifics. Appendices present a capsule form of
repeatedly used data as follows:

• T h e f i l e o r g a n i z a t i o n ^ ^
• Two sets of typical CREATK dialog for INDEXED and SAM files, along

with examples
• Important reference tables: COBOL Verb Index, COBOL Reserved Words,

ASCII Character Set, File Status Key Definitions, Permissible I/O
Statements, Permissible Moves, and Numeric Conversion Tables.

• A list of COBOL punctuation, arithmetic and edit symbols
• A list of compile-time and run-time error messages and their meanings
• An introduction to expanded listing for COBOL programs
• The LABEL command for magnetic tapes
• A list of system files required by COBOL

RELATED DOCUMENT
The Prime User's Guide describes all supporting PRIMOS utilities for programming in
Prime COBOL or any other Prime language. The COBOL Reference Guide and The Prime
User's Guide are complementary documents: both are essential to the COBOL programmer.

LANGUAGE SPECIFICATIONS
Prime COBOL is based upon American National Standard Programming Language COBOL,
X3.23-1974. Elements of the COBOL language are allocated to the following 12 different
functional processing "modules": Nucleus, Table Handling, Sequential I/O, Relative I/O,
Indexed I/O, Sort-Merge, Report Writer, Segmentation, Library, Debug, Inter-Program
Communication, and Communication.
Each module of the COBOL Standard has two non-null "levels": level 2 contains the full set
of capabilit ies and features; level 1 contains a subset of level 2. 4^
In order for a given system to be called COBOL, it must provide at least level 1 of the
Nucleus, Table Handling and Sequential I/O modules.

FDR 3056 ■ y _ 2 1 J a n u a r y 1 9 8 0

OVERVIEW OF PRIME'S COBOL

The following summary specifies the content of the eight modules supported by Prime
COBOL with respect to the Standard.

Modu le Fea tu res Ava i l ab le i n P r ime COBOL
Nucleus Full level 1, plus these features of level 2:

Levels 01-49, 77;
Level 66 with RENAMES clause
permits alternate, possibly overlapping
or regrouping of elementary items;
Value series or range for level 88 conditions;
AND OR NOT = < > in conditions;
IF statements;
Procedure-names consisting of digits only;
PERFORM VARYING with AFTER (up to 3 indexes
allowed);
Mnemonic-names for ACCEPT or DISPLAY devices;
Qualification of Names (Procedure Division);
Sign test;
STRING;
UNSTRING;
COMPUTE with multiple receiving fields;
CORRESPONDING operations for MOVE, ADD, SUB
TRACT;

(DAY jACCEPT < TIME > ;
(DATE)

ADD with TO identifier, and GIVING identifier;
SUBTRACT with FROM identifier,
and GIVING identifier;
MULTIPLY with GIVING identifier, and BY identifier;
DIVIDE with INTO identifier, BY identifier, and
GIVING identifier.

Full level 1, plus these features of level 2:
RESERVE clause and variable form of BLOCK;
Multple file-name in OPEN and CLOSE statements;
WRITE statement with BEFORE/AFTER ADVANCING
identifier LINES;
OPEN EXTEND for Sequential Disk Files.

Relative I/O Full level 1, plus these features of level 2:
RESERVE clause;
DYNAMIC access mode (with READ next);
START (with key relations EQUAL. GREATER,
or NOT LESS).

Indexed I/O Full level 1, plus these features of level 2:
RESERVE clause;
DYNAMIC access (with READ next);
RANDOM access mode with READ by KEY;

Sequential I/O

1 January 1980 1-3 FDR 3056

1 OVERVIEW OF PRIME'S COBOL

• START (with key relations EQUAL, GREATER, or
NOT LESS);

• ALTERNATE RECORD KEY clause with
WITH DUPLICATES phrase (up to 5 additional
key fields supported).

Sort Full level 1 and full level 2 excluding Collating Sequence.
Library Full level 1, plus these features of level 2:

• COPY text-name OF/IN library-name.
Table Handling Full level 1, plus these features of level 2:

• SEARCH;
• SEARCH ALL.

Inter-program
Communica t ion Fu l l l eve l 1 .

PRIME EXTENSIONS TO THE LEVEL 2 STANDARD
• ASSEMBLER (enter assembler);
• COMP-3

COMPUTATIONAL-3 < (paCked deCimal f°rmat):
• EXHIBIT NAMED statement;
• OWNER IS;
• READY TRACE;
• RESET TRACE;
• REMARKS;
• UNCOMPRESSED/COMPRESSED file format;
• Comprehension Cross Reference Listing.

COBOL UNDER PRIMOS

Implementation
Prime's COBOL runs on Prime models 350 and above, operating under PRIMOS. COBOL
runfiles operate in segmented mode (V-MODE or 64V). Code generated in V MODE on the
Prime is pure, and is the same for all processor models.
Prime's processors with XIS (Extended Instruction Set hardware) execute an extended set of
instructions directly, including decimal arithmetic and character edits. They maximize
execution time efficiency. Other processors recognize the code as an unimplemented
instruction trap and automatically substitute an equivalent software routine (UII, Un
implemented Instruction package).

Operation
Prime's COBOL operates on an integrated, interactive virtual memory system based on
demand paging from disk. It supports up to 63 simultaneous users.
All phases of COBOL compilation can be handled through any of the interactive terminals.
Therefore, source programs can be entered and modified directly at a terminal. A COBOL
programmer can compile, list, execute, and save his program in a single interactive session.
Features such as the interactive text editor enable simplified debugging and enhanced
program handling.
The Prime operating system supporting COBOL is called PRIMOS. Only one version of
PRIMOS exists for all Prime models. It features paged and segmented virtual memory

F D R 3 0 5 6 1 - 4 1 J a n u a r y 1 9 8 0

OVERVIEW OF PRIME'S COBOL 1

r

management, based on demand paging from disk with 2048 bytes per page. A page-sharing
feature reduces overhead time. For example, several COBOL users may share one copy of the
Editor to enter, modify, or debug their programs.

Prime's segmentation scheme uses a virtual address consisting of a segment number (one of
4096), a page number, and a word number. The virtual address is translated into a physical
address by a series of segment tables and page maps. Paging requirements for the application
program are thus met immediately and automatically.

Compat ib i l i ty
Because a common operating system architecture is used throughout the Prime processor line,
COBOL programs created on one Prime computer can be used on any larger or smaller Prime
computer without modification. Compatibility holds true at both the source level and the object
level.

PROGRAM ENVIRONMENTS
Under PRIMOS, COBOL programs may execute in one of three environments:

• Interactive
• Phantom user
• Batch job processing

Interactive

Program execution is initiated directly by the user. Programs run in real time and are associated
with a terminal. Error messages and DISPLAY output are printed at the terminal. This environ
ment is the one most often used. Major uses are:

• Program development
• Programs requiring short execution time
• Data entry programs such as order entry or payroll
• Interactive programs such as the EDITOR.

Phantom User
The phantom environment allows programs to be executed while "disconnected" from a
terminal. This frees the terminal for other uses. Phantom users accept input from a command
file instead of a terminal; output directed to a terminal is either ignored or directed to a file.

Major uses of phantoms are:
• Programs requiring long execution time (such as sorts)
• Certain system utilities (such as line printer spooler)
• Any operation when the terminal should be freed for other uses.

Complete information is in the section on COMMAND FILES AND PHANTOMS in the Prime
User's Guide.

Batch job processing
Since the number of phantom users on a system is limited, phantoms are not always available.
The batch environment allows users to submit non-interactive command files as batch jobs at
any time. The batch monitor (itself a phantom) queues these jobs and runs them, one to six at a
time, as phantoms become free. Complete information is in the section BATCH JOB PROCESS
ING in the Prime User's Guide.

18

1 September 1981 1-5 FDR3056

1 OVERVIEW OF PRIME'S COBOL

SYSTEM RESOURCES SUPPORTING COBOL
Prime COBOL shares equally with all Prime programming languages a broad range of system
and file management resources.
Such resources as system libraries, the text editor, or the SEG utility expand the scope and
efficiency of Prime's interactive environment.
Compatible file management systems enhance the mixing capabilities of the system while
providing standardized file management functions. Files are created and maintained separately
from the applications program.

Libraries
The COBOL programmer may find system library functions and subroutines of use in some
applications. A list of VCOBLB library subroutines and functions is presented in Appendix H.
A complete treatment of all library and system subroutines is in the PRIMOS Subroutines
Reference Guide.

Compiler
Prime's COBOL compiler operates on COBOL source code to generate object code. It is also
possible to generate a program listing only. Since syntax checking can be achieved in a shorter
period of time, this feature can produce a quick and useful reference to the source program. The
user has the additional compiler options to control I/O specifications. The compiler is described
in detail in Section 2.

SEG utility
SEG is the program loading and execution utility for COBOL. It combines separately compiled
program modules, subroutines, and libraries into an executable program. Program modules can
be up to 64K words long. All memory management, symbol tables, linkages, etc. are handled by
SEG's loader. Various types of loadmaps may be obtained. The SEG utility has many functions;
they are described as follows:

Normal usage: Section 3 of this manual
Advanced usage: the LOAD and SEG Reference Guide

EDITOR
Prime's text editor is a line-oriented editor enabling the programmer to enter and modify source
code and text files. Information for these purposes is in the Prime User's Guide; a complete
description of the EDITOR is in.the New User's Guide to EDITOR and RUNOFF.

FDR3056 1-6 1 September 1981

OVERVIEW OF PRIME'S COBOL 1

~

r

- ~

Multiple Index Data Access System (MIDAS)
MIDAS is a management software system of utilities and subroutines for creating and
maintaining keyed-index/direct-access files.
MIDAS provides the COBOL programmer with a transparent multi-level file structure. All
housekeeping functions on the index and data sub-files are performed by MIDAS sub
routines called from COBOL programs.
Prime programming files created by programs written in one language may be accessed and
manipulated by programs written in other languages, insuring compatability.
MIDAS Access Manager is reentrant. All active programs on Prime models 350 and above
share a single copy of the manager, minimizing redundancy.

• There can be up to 5 alternate record keys for a COBOL MIDAS file
• Duplicate keys let MIDAS retrieve multiple records for a single key value
• LOCK prevents concurrent usage conflicts
• KEYS can be constructed from concatenated information
• A single program can make segmented and random accesses to a single file

Basic MIDAS template construction information is presented in Appendix B. The complete
documentation is The MIDAS Reference Guide.

Forms Management Systems (FORMS)
FORMS is a system for creation, maintenance, and use of screen forms for interactive file
maintenance. These screen forms are an extremely useful tool for the applications
programmer writing data entry programs, where data fields are to be displayed in one or
more formats.
FORMS keeps application programs, the forms and devices they use separated until run
time. Thus, changes can be effected in one area without necessarily affecting the other two.
FORMS is compatible with DBMS and MIDAS; it is available to up to 63 concurrent users.
It facilitates making accurate data available at widely dispersed locations for inquiry and/or
update by transactions which can represent all elements of a business.
Details are in The FORMS Programmer's Guide.

Language interfaces
Since all Prime high-level languages are alike at the object-code level, and since all use the
same calling conventions, object modules produced by the COBOL compiler can call and be
called by modules produced by the F77, FTN, or PLlG compilers, provided that certain
restrictions are observed:

• All I/O routines must be written in the same language.
• There must be no conflict of data types for variables being passed as

arguments.
• Modules in 64V or 321 may call each other if they are otherwise com

patible.
COBOL programs can also call PMA (Prime Macro Assembler) routines, and vice versa. For
information, see Section 9 of this manual and The Assembly Language Programmer's Guide.

1 S e p t e m b e r 1 9 8 1 1 - 7 F D R 3 0 5 6

LANGUAGE-
SPECIFIC
SYSTEM

INFORMATION

Compiling the program

INTRODUCTION
There is one COBOL compiler for all Prime computers. Source programs must meet the
requirements of Prime's COBOL as specified in this manual. The COBOL compiler generates
object code in the segmented-addressing (64V) mode suitable for processing by Prime's
segmented-addressing loader utility (SEG) on Prime models 350 and up.

USING THE COMPILER
The COBOL compiler is invoked by the COBOL command to PRIMOS:

COBOL pathname [-option-1 [-option-n] . . .]
The elements of this command line have the following meanings:

pathname is the pathname of the COBOL source program file. Pathnames are
explained in the Prime User's Guide. When the COBOL compiler is
invoked, it searches first for pathname plus the suffix.COBOL. If the
filename plus .COBOL is not found, the compiler then looks for
pathname alone.

option-1, are the options controlling compiler functions. Options are discussed
and so on in the subsection COMPILER OPTIONS below. Every option-name

must begin with a dash (-).
As an example, to compile a source program stored in a PRIMOS file named GOOD.COBOL,
enter the following:

COBOL GOOD
This command line causes the compiler to look for a program file named GOOD.COBOL. If it
finds it, it compiles this program, creating a binary file GOOD.BIN and a listing file
GOOD.LIST, as explained in the subsection COBOL FILES below. If there is no file called
GOOD.COBOL, the compiler looks for a file called GOOD and produces a binary file B_GOOD
and a listing file L_GOOD.

Compilation Messages
The Prime COBOL compiler displays milestones during compilation. These phase markers are
displayed on the user's terminal in the following order:

Phase I Environment Division check
Phase II Data Division check
Phase III Procedure Division check
Phase IV Intermediate code generation
Phase V File Control Block generation
Phase VI Final code generation

After the end-of-compilation message discussed below, control returns to PRIMOS.

18

1 September 1981 2-1 FDR3056

2 COMPILING THE PROGRAM

End of compilation messages: After the compiler has generated binary code and a listing output
as specified by the options on the command line, it prints a message at the user's terminal. The
message format is:

xxxx Errors, yyyy Warnings,Prime V-Mode COBOL, Rev x.x program-id
ER!

The components of the message have the following significance:
xxxx is the number of errors encountered during compilation.

yyyy is the number of warnings.
program-id is the program-name (not the PRIMOS filename) of the source

program.
An error is a mistake in a statement that makes execution of the program impossible. A warning
occurs when a statement is encountered which, although legal, may cause unexpected or
undesirable results.
Note that the compiler does not support a SYSTEM READ/WRITE LOCK of 5, as explained for
RWLOCK in the System Administrator's Guide. Consequently, this environment will cause
compiler aborts. Your system administrator should be sure this argument is not used.
If no errors occur during compilation, the message output to the terminal has the format:

No errors, No Warnings, Prime V-Mode COBOL, Rev x.x <program-id>
OK,
An example of a compilation with errors is:

OK, COBOL SAMPLE.SORT
PHASE I
PHASE II
PHASE III
PHASE IV
PHASE V
PHASE VI

1 Error- No Warnings, Prime V-Mode COBOL, Rev 18.1 <SORTIT>
ER!

Note
If there are compiler errors, the binary object file is unusable.

Listing file messages: In the listing file, as well as a listing of the source program and the
program statistics discussed below, the compiler lists error messages, warning messages, and,
within the listing, some in-line messages for obvious syntax errors.

FDR3056 2-2 1 September 1981

COMPILING THE PROGRAM 2

The general format of the error message is:
n message []

These elements have the following meanings:

n

message

is the line reference number in the source.
is the standard COBOL compiler error message. A list is given in
Appendix E.
contains the variable or keyword in the source whose use generates the
error.

For example:

0045 AREA-A VIOLATION;
ERB. [DI]

RESUMES AT NEXT PARAGRAPH/SECTION/DIVISION/V

Note

Sometimes a compiler error message is accompanied by an internal error
message.
If an internal error occurs on a line containing a semantic error, the
semantic error is probably the sole source of the problem. Correct the
semantic error and recompile.
If an internal error occurs by itself, correct all previous semantic errors
and recompile. If the internal error persists, report the internal error code
number to your local field analyst.

The general format of the warning message is:
n /W7 message. []

It has the following elements:
n

/W/

message

For example:

is the line reference number.
indicates WARNING.
is the standard COBOL compiler warning message. A complete list is given
in Error Messages, Appendix E.
is a variable describing the problem.

0063 /W/ DISPLAY TRUNCATED TO 72 CHARACTERS.

An in-line error message follows the source line in which the error occurs. The message takes
the format:

"SYNTAX ERROR** variable [message]

For example:
** SYNTAX ERPOR ** "QLIT" LENGTH? PUNCT?

1 September 1981 2-3 FDR3056

2 COMPILING THE PROGRAM

Program statistics
When programs or modules are compiled, program statistics are appended to the listing. These
statistics relate to fixed storage allocations for specified aspects of the program as compiled.
These can be useful in determining the number of segments a program may require, or in setting
up shared procedures.
It should be noted that while the storage allocation descriptions which follow are fixed for a
given compilation, they do not include storage allocations forrequired libraries and subroutines.

The program statistics are:
Executable Code Si/e:

Constant Pool Size:

Total Pure Procedure Size:

Working-Storage Size:
Total Linkframe Size:

Stack Size:

Trace Mode:
xxxx Arguments Expected.

The number of words of code generated from the
Procedure Division of the source program.
The size of any non-changing information required
at runtime (quoted literals or decimal and binary
constants).
The sum of the two values above. This is the size of
the sharable portion of a program.

The size of the user-defined Working Storage.
The total size of static storage needed by the program
(file buffers, File Control Blocks, etc.).
The total size of stack needed. It is comprised of:
• Standard stack header.
• Arguments to this routine (if any).
• Compiler-generated temporaries.

The trace mode status (on or off).
The number of arguments expected is xxxx. If no
arguments are needed, the message is No Argu
ments Expected.
The number of lines in the source program is yyyy.yyyy Source Lines.

COMPILER OPTIONS
The compiler functions enabled by the option parameters fall into three groups:

• Specify I/O Devices
BINARY
INPUT
SOURCE
LISTING

• Specify Addressing Mode
64V

• Enable Expanded Listings or Cross References
EXPLIST
NOEXPLIST
XREF
NOXREF

The defaults listed in this section are those supplied by Prime and are preceded by the bullet (•)
symbol. The system manager may change these at any particular installation. The programmer

FDR3056 2-4 1 September 1981

COMPILING THE PROGRAM 2

r should check with the system manager to determine if defaults have been changed and, if so,
which options are the new defaults.

Rust-colored letters indicate minimum permissible abbreviations. Arguments, if any, are listed
following their options. Bullets indicate the default when an option is not specified.

Specify Input/Output Devices
The parameters below allow the user to inform the compiler of the input source filename and to
specify the listing and binary object files. See Table 2-1 for a summary.

-INPUT
-I pathname

-BINARY
-B pathname
-BNO

• -B YES

-
-LISTING

-L pathname
-LNO

• -L YES

- LT T Y
-L SPOOL

-SOURCE

Addressing Mode
• -64V

Specifies input file/device.
Specifies the name of the input source program. (See Table 2-1).
This parameter must not be used if the source filename imme
diately follows the COBOL command; otherwise, it must be
included in the option list.
To override default, specifies binary (object) output file/device.
The binary file will be created with the pathname specified.
No binary file will be created; only a syntax check will occur.
The binary file is created with the default name filename.BIN,
where filename is the source file name without its .COBOL
suffix. For compatibility with older COBOL files, the default
binary filename for files that do not have the .COBOL suffix is B_
filename.
To override default, specifies listing file/device. For contents of
the listing file, see Listing File Messages on page 2-2.
The listing file will be created with the pathname specified.
No listing file will be created. At later stages in program develop
ment or when minor modifications are made to programs, it may
not be considered necessary to get a source program listing.
The listing file is created with the default name filename.LIST,
where filename is the source filename without its .COBOL suffix.
For compatibility with older COBOL files, the default listing
filename for files without the .COBOL suffix is L_filename.
The listing file is printed on the user's terminal.
The listing file is spooled directly to the line printer.
Same as -INPUT.

Generates segmented-addressed code which must be loaded
with the SEG loader. It provides a user area up to 32 megabytes
(256 segments of 128K bytes each). It may be run on any Prime
model 350 or above under PRIMOS.

1 September 1981 2-5 FDR3056

2 COMPILING THE PROGRAM

18

Enable Expanded Listings or Cross References

Expanded listing: The expanded listing is a combination of a regular listing (source code with
line number appended) and machine-generated code.

• -NOEXPLIST

-EXPLIST

Suppresses generation of the expanded listing. This is the
normal default.
Generates an expanded listing at the end of the listing file. User
defined names are NOT used, machine-generated labels are
placed in the listing.

Table 2-1. Compiler File Specifications

(X means this argument is not used with this option.)

Argument
Option

INPUT LISTING BINARY
pathname Look for file Open file named Open file named

named pathname pathname as pathname as
as source file listing file binary (object)

file.
YES Use default file Use default file

name for listing name for binary
file file
(PROGRAM.LIST (PROGRAM.BIN
orL_PROGRM). orB_PROGRM).

NO No listing file. No binary file.
TTY Print listing on

user terminal.
SPOOL Spool listing

directly to line
printer.

Option Source filename Same as YES Same as YES
not must be first
invoked option after

COBOL command.

An expanded listing example for SAMPLE appears in Appendix F. To fully utilize the listing, a
knowledge of PMA is necessary. The reader is referred to the Assembly Language Program
mer's Guide.

Cross-reference listing: The Cross Reference has two compile-time options, -NOXREF or
-XREF.

• -NOXREF Suppresses generation of any cross-reference listing. This is the
normal default.

-XREF Generates a cross-reference listing at the end of the listing file. A
line number with a suffix 'D' or 'DEF' indicates a paragraph or
section name in the Procedure Division.

FDR3056 2-6 1 September 1981

COMPILING THE PROGRAM 2

For example:

Cross Reference of Programmer-defined Names

~

NAME LINE NUMBER

161DEF
163 195DEF 251 311
174 202DEF 224
184 215DEF
57 170 278

179 222DEF
181 229 236 242 282DEF
182 230 237 294DEF
183 231 306DEF
38
31 258 270
49 258
52
63
75 164

A000-CREATE-SALES-REPORT
A001-BUILD-DATE-FIELD
AO 1O-PRINT-HEADINGS
AO 20-PRINT-FINAL-TOTALS
ARE-THERE-MORE-RECORDS
BO 0 0-READ-PROCESS-AND-WRITE
B010-DEPT-CHANGE
B020-STORE-CHANGE
B030-DATE-CHANGE
CARRIAGE-CONTROL
COMMISSION-IN
COMMISSION-OUT
COMPARE-AREAS
DATE-CHANGED
DATE-HEADING

An actual listing for SAMPLE.SORT is shown in Section 11.

COBOL FILES
File Types
Three types of files may be involved during compilation. They are: source file, listing file, object
file. Of these, the listing and object files are compiler-generated. Corresponding PRIMOS file
units are given below. (File unit numbers, which are needed for some PRIMOS commands, are
explained in Section 3 of the Primos Commands Reference Guide.)

File Type

18

Source
Listing
Object

PRIMOS File Unit
1
2
3

The content of the listing file is explained on page 2-2.

1 September 1981 2-7 FDR3056

2 COMPILING THE PROGRAM

18 File Names
If disk is specified as the device for the listing and/or object file, the COBOL compiler causes
these files to be opened on the disk with default names constructed as follows:
If the source filename has the form pathname.COBOL, then the listing file and the object file will
be opened as filename.LIST and filename.BIN respectively in the current UFD. Upon comple
tion of the COBOL compilation all files are closed and command returns to PRIMOS.
If the source file pathname does not end in .COBOL, then the listing file and the object file will be
opened as L_filename and B_filename respectively, always in the current UFD.
If the user desires the listing or binary files to be opened in UFDs other than the current one, the
-L and -B options with the desired pathname should be used in the command line for
compilation.

Setting Other Default File Names
If the user desires the listing or object files to have other default names than outlined above, the
PRIMOS commands LISTING and BINARY must be invoked prior to compilation.
To establish an alternate default list file, use:

LISTING pathname-2
This command opens a listing file with the specified name pathname-2 on PRIMOS file unit 2,
and inhibits the compiler instruction COBOL from opening a default listing file.
The listing outputs of more than one source file can be concatenated if all listings are generated
prior to closing the listing file. For example, the following series of commands will create a file,
pathname-2, that contains the concatenation of all listing outputs from source-1 through
source-n (for those compilations where listings were not suppressed):

LISTING pathname-2

COBOL source-1 options

COBOL source-n options

CLOSE ALL

Note

System responses are not printed in the example above.
To establish an alternate default binary file, use:

BINARY pathname-3
This command opens a binary (object) file with the specified name pathname-3 on PRIMOS file
unit 3, and inhibits the compiler instruction COBOL from opening a default object file.

FDR3056 2-8 1 September 1981

COMPILING THE PROGRAM

r Nott

If the BINARY or LISTING commands are used prior to the COBOL
command, then COBOL does not close these files upon completion.
After COBOL returns command to PRIMOS, these files should be closed
by the user by typing:

:lose
pathname-2 pathname-3

or

CLOSE ALL

r

-

r

1 September 1981 2-9 FDR3056

m Loading andexecuting programs

LOADING AND EXECUTING PROGRAMS
The PRIMOS SEG utility loads and executes all COBOL programs. This section describes
normal loading and execution, and specifies some techniques required for COBOL programs.
The loading concept is described in mo re detail in the Prime User's Guide. For extended loading
features, as well as a complete description of all SEG commands, including those for advanced
system-level programming, refer to the LOAD and SEG Reference Guide.

LOADING PROGRAMS
Normal Loading

Most loads can be accomplished by the following basic procedure:
1. Give the command SEG -LOAD.
2. Enter LO filename, where filename is the name of the source program, minus

the suffix .COBOL. This command causes the corresponding binary file to
be loaded, and tells SEG that the runfile (execution file) is to be named
filename.SEG.

3. Use the LOAD command to load any other object files such as called pro
grams or separately compiled subroutines. It is most efficient to load these
in order of frequency of use.

4. LJse the LIBRARY command to load subroutines called from libraries in the
following order:

. The shared COBOL library (LI VCOBLB) or nonshared (LI NVCOBLB)
• Other Prime libraries as required, such as the sort library (LI VSRTLI)

or the MIDAS library (LI VKDALB)
• The standard library and reference checking (LI with no filename)

5. At this point, you should receive a LOAD COMPLETE message. If the message
is absent, enter MAP 3 to identify the unresolved references and load them.
(See the LOAD and SEG Reference Guide for help with MAP 3.) If a SEG error
message appears, refer to the same reference guide for the probable cause and
correction. If the unsatisfied references are caused by misspelled names, it
may be necessary to exit with QUIT and start again from step 1.

6. Enter QUIT to save the runfile and exit from the SEG utility.

Note
Do not use the shared COBOL library (VCOBLB.BIN) with a MIDAS library
(VKDALB.BIN) from a previous software revision.

As an example of loading, assume that the user has compiled a main program MAIN.COBOL,
and a subroutine. SUBR.COBOL, in a separate file. Both have been compiled to produce object

18

19

19

I Julv 1982 3-1 FDR3056

3 LOADING AND EXECUTING PROGRAMS

files with the default filenames MAIN.BIN and SUBR.BIN. They can be loaded into a runfile as
follows:

OK, SEG -LOAD
[SEG rev 18.2]
$ LO MAIN
$ LO SUBR
$ LI VCOBLB
$ LI

LOAD COMPLETE
$ Q
OK,

The Older Loading Procedure
If the source filename did not end with .COBOL, more steps are necessary to create a runfile.
The simplest method is often to rename the binary file or files with the PRIMOS command
CNAME:

CNAME B_MAIN MAIN.BIN

In this case, the previous loading procedure can now be used.
To create a runfile with binary files whose name does not end with .BIN, add the extra step of
naming the runfile:

1. Enter SEG.
2. LJse the LOAD command to create and name the runfile (LOAD filename.SEG

is suggested, but the user may choose any filename).
3. Use the LOAD command to load the binary file (LO filename).
4. Follow steps 3 through 6 above.

EXECUTING LOADED PROGRAMS — RUNTIME
Execution of Runfiles
For programs loaded and saved by SEG, execution is performed at the PRIMOS level using the
SEG command:

SEG pathname
where pathname is the name of a runfile (segmented file). SEG looks first for pathname.SEG,
and then for pathname, so if the normal loading procedure was used you can enter the pathname
of the source file without the suffix. If the older loading procedure was used, enter the runfile
name that you supplied.

Seg loads the runfile into segmented memory and begins execution of the program after the file
assignment dialog below.
A Shortcut to Program Execution
For both loading procedures, a shortcut to saving and executing a loaded program is available.
Immediately after receiving the LOAD COMPLETE message, enter the EXECUTE command.
This command will then save the loaded program and start executing the program after the file
assignment dialog below. EXECUTE may only be used within the SEG environment, that is,
when the S prompt is displayed.

Upon completion of program execution, control returns to PRIMOS command level.

FDR3056 3 - 2 1 S e p t e m b e r 1 9 8 1

LOADING AND EXECUTING PROGRAMS 3

-

r

r

r

File Assignments at Runtime
If FDs with the VALUE OF FILE-ID clause are included in the COBOL program, and no EXIT
PROGRAM statement is used, file assignments may be made or changed at runtime.

Immediately following the execute command of SEG or EXECUTE, a series of questions will be
asked concerning runtime file assignments. These questions are prompted by the utility
program C$IN.
The terminal will display:

ENTER FILE ASSIGNMENTS:
>

The proper response to the request above is to give the name of the file (as stated in the VALUE
OF FILE-ID clause of the File Description), followed by an equals sign and the pathname of the
actual disk or tape file to be associated with the ID. The pathnahie can be a filename if the file
resides in the current UFD.
The utility program CSIN will do all prescreening of the files and display the prompt character
> while waiting for user input. There should be one entry for each FD whose FILE-ID is to be
reassigned. When no files remain to be entered, the single slash character (/) will conclude the
session. Execution of the application program will then begin, using the file assignments which
were just entered.
If there are no files in the program or if the main program contains an EXIT PROGRAM
statement, C$IN will not ask for file assignment. In the latter case, C$IN will take the default
VALUE OF FILE-ID values as defined in the FDs. If there are no VALUE OF FILE-ID clauses in
an FD, the compiler will generate files with the names Fl, F2, F3, and so forth.
Disk formats (filenames and pathnames): A pathname in a disk format entry is an extended
form of the filename which describes the location of the file in the directory structure.
Pathnames specified as parameters should not contain spaces as the space or comma is used to
separate one parameter from another. If a space must be specified due to a password, enclose
the entire pathname in single quotes.
For example:

>FILE1 = UFD1>FILE
>FILE2 = 'UFD1 PASSWORD>FILE'

Tape assignment format: Tape assignments use this format:
file-id = $MTx, label-type, tape-id, tape-name

The arguments of the format have these meanings:
file-id: is the name within quotes in the VALUE OF FILE-ID clause, or else

Fl, F2, and so forth.
$MTx: x is a drive number from 0 through 3 (0 through 9 if the PRIMOS

command ASSIGN was used with the -ALIAS clause).

label-type: N for no label information; S if the tape contains standard labels and
is prenumbered.

tape-id: is a field of up to 14 alphanumeric characters that is checked at open
time when a tape is read.

tape-name: is a field of up to six alphanumeric characters that is written in the
label of a tape being created, or checked if a tape is being read. This is
referred to in subroutine messages as the VSN (volume serial
number).

1 September 1981 3-3 FDR3056

3 LOADING AND EXECUTING PROGRAMS

Note that with standard magnetic tape labels the tape will automatically rewind after a CLOSE
statement. With non-standard labels the tape will stay positioned to the end of the file.

Note

Appendix G explains how to create and read a VOLl label on a magtape.
Error messages: The following are error messages which may be generated by bad tape
assignments:

▶ B A D D E L I M I T E R
The equals sign was missing, or a tape file assignment was not expected because the assign
ment did not begin with $MT or because the assignment was within quote marks.

▶ LABEL SPECIFICATION EXPECTED
The argument following $MTx was not S or N.

▶ VSN EXPECTED
The tape-name was missing.

▶ NAME TOO LONG
The file-id before the equals sign was longer than eight characters, or the tape-id was longer
than 17 characters, or the tape-name was longer than six characters.

Assignment examples: Suppose that in a COBOL program the following statements exist:
FD TEST-FILE

LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS 'FILEl'.

FD TAPE-FILE
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID IS 'FILE2'.

Then an appropriate assignment dialog would be:

OKf SEG MAIN
ENTER FILE ASSIGNMENTS:
> FILEl = REED>T1
> FILE2=$MT1, S, Tl, MYTAPE
> /
FILE ASSIGNMENTS COMPLETE

The first response would cause the computer to seek a disk file called Tl in UFD REED as input
to TEST-FILE in the program. The second response assumes that tape drive 1 has been
assigned, with a tape mounted that contains a tape-id of Tl and a volume name of MYTAPE.
The slash signals the end of assignments.

Runtime error messages
An alphabetic list of COBOL runtime error messages is provided in Appendix E of this
document. System runtime error messages are listed in the Prime User's Guide.

FDR3056 3-4 1 September 1981

COBOL
LANGUAGE

REFERENCE

Fundamental
concepts of COBOL ^

DIVISIONS OF A COBOL PROGRAM: A SUMMARY
Every COBOL program consists of four divisions:

• Identification Division
• Environment Division
• Data Division
• Procedure Division

Identification Division
The Identification Division (ID Division) assigns a name to the program and allows the
programmer to enter other documentary information, such as the programmers name, the
date the program was written, and so on.

Environment Division
The Environment Division specfies a standard method of expressing those aspects of a data-
processing problem which depend upon the physical characteristics of a specific computer.
Two sections make up the Environment Division; the Configuration Section and the Input-
Output Section.
Configuration section: describes the computer configuration on which the source program is
compiled, and the configuration on which the compiled program is to be run. It also relates
system names used by the compiler to names introduced by the programmer in the source
program.
Input-output section: contains the information needed to control transmission and handling
of data between external media and the program. This section describes the name, type of
organization, and access mode of each data file, and associates the file with a peripheral
device.

Data Division
The Data Division provides the compiler with a detailed description of the characteristics of
every data item used within the program. There are three sections of the Data Division; the
File Section, the Working-Storage Section and the Linkage Section.
File section: describes the structure of data files. Each file is defined by a File Description
entry and one or more Record Description entries.
Working-storage section: describes reecords and noncontiguous data items which are not
part of external files, but are developed and processed internally. It also defines data items
whose values do not change during the execution of the program (i.e.. constants).
Linkage section: of a COBOL program is meaningful only in a called program. This section,
appearing in the called program, describes data items which may be referred to by both the
called and calling programs.

I J a n u a r y 1 9 8 0 4 - 1 F D R 3 0 5 6

4 FUNDAMENTAL CONCEPTS OF COBOL

Procedure Division
The Procedure Division contains instructions (COBOL statements) required to solve a data
processing problem.
This division contains two types of sections: declarative sections and procedural sections.
Declarative sections: are optional. When used, they must be grouped at the beginning of the
Procedure Division. Declarative sections permit the execution of instructions which are not
performed in the regular sequence of coding. Such out-of-sequence procedures are usually
initiated by a condition which the program does not test directly.
Procedural sections: follow declaratives in a logical sequence. Each procedural section
comprises one or more paragraphs. Each paragraph consists of one or more COBOL
sentences. Sentences, in turn, are comprised of one or more COBOL statements.
Execution of the instructions in the Procedure Division begins with the first statement in the
division, excluding declaratives. Statements are executed in the order in which they are
presented for compilation, unless the rules indicate otherwise.
The Procedure Division ends at that point in the source program after which no further
procedures appear. This coincides with the physical end in the program.
The following skeletal coding defines the program format and order:

ID DIVISION.
PROGRAM-ID. program-name.

[AUTHOR, [comment-entry]...]
[INSTALLATION, [comment-entry]...]
[DATE-WRITTEN, [comment-entry]...]
[DATE-COMPILED, [comment-entry]...]
[SECURITY, [comment-entry]
[REMARKS, [comment-entry]...]
ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.
[SOURCE COMPUTER, entry.]
[OBJECT COMPUTER, entry.]
[SPECIAL-NAMES, entry.l]
[INPUT-OUTPUT SECTION.
FILE CONTROL, (entry) ...

[I-O-CONTROL. entry]]
DATA DIVISION.

[FILE SECTION,
[flle-description-entry.
[record-description-entry]...]...
[sort-file-description-entry,
{record-descript ion-entry}.. .] . . .]
[WORKING-STORAGE SECTION.
[77-level-description-entry]...
[record-description-entry]...]
TLINKAGE SECTION.
[77-level-description-entry]...
[record-description-entry]...]
PROCEDURE DIVISION [USING identlfler-1

[DECLARATIVES.
{section-name SECTION, use-sentence,
[paragraph-name, [sentence]...]... } ...
END DECLARATIVES,

{section-name SECTION.
[paragraph-name, [sentence] ...] ... } ...

FDR 3056 4-2 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

The following listing file for sample program SAMPLE, illustrates the program format and
order. SAMPLE creates and reads a relative file sequentially.

Rev 17.2
(0001)
(0002)
(3003)
(0004)
(0005)
(0006)
(0007)
(0008)
(0009)
(0010)
(0011)
(0012)
(0013)
(0014)
(0015)
(0016)
(0017)
(0018)
(0019)
(0020)
(0021)
(0022)
(0023)
(0024)
(0025)
(0026)
(0027)
(0028)
(0029)
(0030)
(0031)
(0032)
(0033)
(0034)
(0035)
(0036)
(0037)
(0038)
(0039)
(0040)
(0041)
(0042)
(0043)
(0044)
(0045)
(0046)
(0047)
(0048)
(0049)
(0050)

COBOL SAMPLE 11/05/79 13:55Source File:
ID DIVISION.
PROGRAM-ID. SAMPLE.
INSTALLATION. PRIME COMPUTER TECHNICAL PUBLICATIONS DIVISION.
DATE-WRITTEN. OCT 26, 1979.
SECURITY. NONE.
REMARKS. THIS FROGRAM CREATES AND READS A RELATIVE FILE

SEQUENTIALLY.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. FRIME-750.
OBJECT-COMPUTER. FRIME-750.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINT-FILE ASSIGN TO PRINTER.
SELECT CARD-FILE ASSIGN TO PFMS.
SELECT DIRECTORY-FILE ASSIGN TO PFMS,

ORGANIZATION IS RELATIVE,
RELATIVE KEY IS RELATIVE-KEY,
ACCESS MODE IS SEQUENTIAL,
FILE STATUS IS FILE-STATUS.

DATA DIVISION.
FILE SECTION.
FD PRINT-FILE, LABEL RECORDS ARE OMITTED,

DATA RECORD IS PRINT-LINE,
RECORD CONTAINS 132 CHARACTERS.

PRINT-LINE PIC X(132) .
CARD-FILE, LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS 'INDATA'.
CARD-IMAGE PIC X (80) .
DIRECTORY-FILE, LABEL RECORDS ARE STANDARD,
VALUE OF FILE-ID IS 'D-FILE'.
DIRECTORY-RECCRD.
05 CARRIAGE-CONTROL PIC X.

NAME.
10 LAST-NAME PIC X(15) .
10 FIRST-NAME PIC X(15) .
FILLER PIC X(l) .
ADDRESS PIC X(25).
FILLER PIC X(l) .
CITY PIC X(4) .
FILLER PIC X(3) .
PHONE-NO PIC 9(7) .
FILLER PIC X(8) .

WORKING-STORAGE SECTION.
01 RELATIVE-KEY PIC XX.
77 FILE-STATUS PIC XX VALUE SPACES.
01 HEADER.

05 HI PIC X(5) , VALUE IS ' NAME1.
05 FILLER PIC X(27) , VALUE IS SPACE.
05 H2 PIC X(6), VALUE IS 'STREET'.

01
FD

01
FD

01

05

05
05
05
05
05
05
05

1 January 1980 4-3 FDR 3056

4 FUNDAMENTAL CONCEPTS OF COBOL

(0051)
(0052)
(0053)
(0054)
(0055)
(0056)
(0057)
(0058)
(0059)
(0060)
(0061)
(0062)
(0063)
(0064)
(0065)
(0066)
(0067)
(0068)
(0069)
(0070)
(0071)
(0072)
(0073)
(0074)
(0075)
(0076)
(0077)
(0078)
(0079)
(0080)
(0081)
(0082)
(0083)

05 FILLER PIC X(19) , VALUE IS SPACE.
05 H3 PIC X(4), VALUE IS 'CITY'.
05 FILLER PIC X(4) , VALUE IS SPACE.
05 H4 PIC X(5), VALUE IS 'PHONE'.

PROCEDURE DIVISION.
BEGIN SECTION.
CREATE-FILE.

OPEN INPUT CARD-FILE.
OPEN OUTPUT PRINT-FILE, DIRECTORY-FILE.
WRITE PRINT-LINE FRCM HEADER AFTER ADVANCING PAGE.

READ-NEXT.
READ CARD-FILE AT END GO TO LIST-DIRECTORY.
MOVE CARD-IMAGE TO FRINT-LINE.
MOVE CARD-IMAGE TO DIRECTORY-RECORD.
WRITE FRINT-LINE.
WRITE DIRECTORY-RECORD INVALID KEY DISPLAY 'INVALID KEY'
GO TO READ-NEXT.

LIST-DIRECTORY.
CLOSE CARD-FILE, DIRECTORY-FILE.
DISPLAY 'END TEST TO CREATE FILE' .
OPEN INPUT DIRECTORY-FILE.

LAST-SECTION SECTION.
LIST.

WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
READ-NEXT-DIRECTORY-RECORD.

READ DIRECTORY-FILE NEXT RECORD AT END GO TO CLOSE-ALL.
MOVE DIRECTORY-RECORD TO FRINT-LINE.
WRITE PRINT-LINE.
GO TO READ-NEXT-DIRBCTCRY-RECCRD.

CLOSE-ALL.
CLOSE DIRECTORY-FILE, PRINT-FILE.
DISPLAY 'END TEST SEQUENTIAL READ AFTER A START' .
STOP RUN.

No Errors, No Warnings, Prime V-Mode COBOL, Rev 17.2 <SAMPLE>

LANGUAGE CONSIDERATIONS

Format notation
Throughout the Reference portion of this document, basic formats are prescribed for
various clauses or statements. These generalized descriptions guide the programmer in
writing his (or her) own statements. They are presented in a uniform system of notation:

• All words printed entirely in capital letters are Reserved Words. These are
words which have preassigned meanings. In all formats, words in capital
letters represent an actual occurrence of those words.

• All underlined Reserved Words are required unless the portion of the
format containing them is itself optional. Such underlined Reserved Words
are Key Words. If any Key Word is missing or is incorrectly spelled, it is
considered an error in the program. Reserved Words not underlined may
be included or omitted at the option of the programmer. These words are

FDR 3056 4-4 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

r

r

optional words: they are used solely for improving readability of the
program.

• The characters < , > , and = when appearing in formats, although not
underlined, are required when such formats are used.

• All punctuation and other special characters represent the actual occur
rence of those characters. Punctuation is essential where it is shown.
Additional punctuation can be inserted, according to the rules for punctua
tion specified in this publication. In general, terminal periods are shown in
formats in the manual because they are required; semicolons and commas
are not shown generally because they are optional.

• Words printed in lower-case letters in formats represent programmer
defined variables.

• Parts of a statement or Data Description entry which are enclosed in
brackets | | are optional. Parts between matching braces | j represent a
choice of mutually exclusive options, of which one must be chosen. When
brackets or braces enclose a portion of a format, but only one possibility is
shown, the function of the brackets or braces is to delimit that portion of
the format to which a following ellipsis applies.

• Certain entries in the formats consist of a capitalized word(s) followed by
the word Clause or Statement . These designate clauses or statements
which are described in other formats in appropriate sections of the text.

• In order to facilitate reference to them in the text, some lower case words
are followed by a hyphen and a digit or letter. This modification does not
change the syntactical definition of the word.

• The ellipsis (...) indicates that the immediately preceding unit may occur
once, or any number of times in succession. A unit means either a single
lower-case word, or a group of lower-case words and one or more
Reserved Words enclosed in brackets or braces. If a term is enclosed in
brackets or braces, the entire unit of which it is part must be repeated
when repetition is specified.

• Comments, restrictions, and clarifications on the use and meaning of every
format are contained in the appropriate portions of the manual.

• Multiple formats for a given COBOL verb are mutually exclusive options,
of which only one may be chosen.

Punctuation rules
The following general rules of punctuation apply in writing source programs:

• A period, semicolon, or comma, when used, cannot be preceded by a
space, but must be followed by space.

• Left and right parentheses must appear in balanced pairs. They are used to
delimit subscripts, indexes, arithemetic expressions, or conditions.

• At least one space must appear between two successive words and/or
literals. Two or more successive spaces are treated as a single space,
except in non-numeric literals.

• Relation characters should always be preceded by a space and followed by
another space.

• When the period, comma, plus, or minus characters are used in the
PICTURE clause, they are governed solely by rules for numeric edited
items.

• A comma may be used as a separator between successive operands of a
statement, or between two subscripts.

1 J u n u a r y 1 9 8 0 4 - 5 F D R 3 0 5 6

4 FUNDAMENTAL CONCEPTS OF COBOL

• A semicolon or comma may be used to separate a series of statements or
clauses.

Coding rules
Since Prime COBOL is a subset of American National Standards Institute (ANSI) COBOL,
programs are written on standard COBOL coding sheets (Figure 4-1). The following rules are
applicable:

• Each line of code should have a six-digit sequence number in positions 1-6,
such that the source statements are in ascending order. Blanks are also
permitted in positions 1-6.

• Reserved Words for division, section, and paragraph headers must begin in
the A Area (positions 8-11). Procedure-names must also appear in the A
Area (at the point where they are defined). Level numbers may appear in
the A Area.

• All other program elements must be confined to positions 12-72, governed
by the other rules of statement punctuation.

• Positions 73-80 are ignored by the compiler. Frequently, these positions are
used to contain the program identification.

• Position 7 is used for special coding symbols. Explanatory comments may
be inserted on any line within a source program by placing an asterisk (*)
in position 7 of the line. Any combination of characters may be included in
the A and B Areas of that line. The asterisk and the characters will be
produced on the source listing but serve no other purpose. If a slash (/)
appears in position 7, the next line will be printed at the top of a new page
when the compiler lists the program. A hyphen (-) is used to continue a
non-numeric literal from one line to another. Refer to Non-numeric literals
(later on in this section) for coding rules.

COBOL Coding Form
PUNCHING INSTRUCTIONS

"ROGRAMMER

COBOL STATEMENT IDENTIFICATION

K - j j

* * > f a t t » — ' h ■■ !

Figure 4-1. Standard COBOL coding sheet

FDR 3056 4-6 1 January 1980

Prime character set
The standard character set utilitized by Prime is the ANSI, ASCII. 7-bit character set. The
entire set of characters, with octal, hexadecimal, and punched card equivalents, is
presented in Appendix C.

Collating sequence
Each character in the Prime character set has a unique octal value which establishes the
collating sequence for the character set. This sequence conforms to the American Standards
Code for Information Interchange (ASCII). The characters in Appendix C, the ASCII
Character Set, are arranged in ascending order from top to bottom.

LANGUAGE SPECIFICATIONS

COBOL character set
The standard COBOL language character set utilizes 52 characters as follows: The numbers
0 through 9, the 26 uppercase letters of the English alphabet, the space (blank), and 14
special characters. (A fifteenth special character, the apostrophe, is used by Prime COBOL
as an alternate for the quotation mark). The complete COBOL character set is illustrated in
Figure 4-2.
The individual characters of the COBOL language are the basic units used to form the major
elements of COBOL, i.e.. character-string, separators, words, statements, sentences, para
graphs, and sections.

Character strings
A character-string is a character or a seqence of contiguous characters which forms a
COBOL word, a literal, a PICTURE character-string, or a comment-entry. A character-string
is delimited by separators.

Picture character-strings
A PICTURE character-string (picture-string) consists of certain combinations of characters
in the COBOL character set used as symbols. See DATA DIVISION, PICTURE, for a
description of the PICTURE character-string and the rules governing its use. A punctuation
character which is part of the specification of a PICTURE character-string is not considered
as a punctuation character, but as a symbol in that PICTURE character-string.

Word formation
A COBOL word is a character-string of not more than 30 characters chosen from the
following set of 37 characters:

0 through 9 (digits)
A through Z (letters)
- hyphen

A word must not begin or end with a hyphen. A word is ended by a space, or by proper
punctuation. A word may contain more than one embedded hyphen: consecutive embedded
hyphens are also permitted.
All words are either Reserved Words or programmer-defined words.
If a programmer-defined word is not unique, there must be an unique method of referencing
it by using name qualifiers, e.g.. TAX-RATE IN STATE-TABLE. Primarily, a programmer-
defined word identifies a data item or field, and is called a data-name. Other cases of
programmer-defined words are file-names, condition-names, and mnemonic-names.

j January 1980 4 _ 7 F D R 3 0 5 6

FUNDAMENTAL CONCEPTS OF COBOL

CLASS CHARACTER MEANING SPECIAL USAGE

f
J 0.1.. ..9 digit COBOL word formation

numeric ■< figurativeJLOW-VALUE(s) value (null figurative constant
I constantslzERO,ZEROS,ZEROES value (zero) figurative constant
C A, B,. .,Z letter COBOL word formation

alphabetic < space blank punctuation
[figurativefSPACE(s)

constants!
value (blank) figurative constant

r + plus sign sign symbol/arithmetic/editing
minus sign sign symbol/arithmetic/coding

symbol/editing/COBOL word formation
alpha- ., asterisk coding symbol/ arithmetic/editing
numeric equal sign arithmetic/relation tests/editing

$ currency sign
comma
semicolon

editing
punctuation/editing
punctuation

s p e c i a l j
characters j

period punctuation
quotation mark punctuation
apostrophe (quotation mark punctuation
substitution)

(left parenthesis punctuation
i right parenthesis punctuation> greater-than relation tests

< less-than relation tests
i virgule (slash) arithmetic/editing/coding symbol
figurative J* QUOTE(s) value (quotation) figurative constant«., . constant l.HIGH-VALUE(s) value (delete) figurative constant

Note
When the figurative constant LOW-VALUES is used with
binary data, it is interpreted as numeric. In all other instances, it
is interpreted as alphanumeric.

Figure 4-2 COBOL Character Set

FDR 3056 4-8 1 January !!)«()

FUNDAMENTAL CONCEPTS OF COBOL 4

r

r

With the exception of paragraph-name and section-name, all programmer-defined words
must contain at least one alphabetical character.

Reserved words
A Reserved Word is one of a specified list of words which may be used in COBOL source
programs, but which may not appear as programmers-defined words. They may only be
used as specified in the general formats. The types of Reserved Words are:

• Key words
• Optional words
• Connectives
• Figurative constants
• Special-character words

Key words: A key word is one whose presence is required when the statement in which the
word appears is used in a source program. Within each statement, such words are uppercase
and underlined.
Optional words: Within each format, uppercase words which are not underlined are called
optional words; they may appear at the user's option. The presence or absence of an
optional word does not alter the meaning of the COBOL program in which it appears, but is
required as written when used.
Connectives: The three types of connectives are:

1. Qualifier-connectives used to associate a data-name, condition-name,
text-name, or paragraph-name with its qualifier: OF, IN

2. Series connectives which may be used to link two or more consecutive
operands: , (comma) or : (semicolon)

3. Logical connectives used in the formation of conditions: AND. OR
Figurative constants: Figurative constants are Reserved Words used to name and reference
specific constant values. A figurative constant represents as many instances of the as
sociated character as required in the context of the statement.
The singular and plural forms are equivalent and may be used interchangeably.
A figurative constant may be used wherever literal appears in a format description:
except that, whenever the literal is restricted to numeric characters, the only figurative
constant permitted is ZERO (ZEROS, ZEROES). A figurative constant must not be bounded
by quotation marks.
Values, and the Reserved Words used to reference them are:

ZERO)
ZEROS > = The ASCII character represented by Octal 260
zeroes)
LOW-VALUE) = The character whose Octal representation is 200
LOW-VALUES j
HIGH-VALUE) = The character whose Octal representation is 377
HIGH-VALUES j
QUOTE) = The quotation mark, whose Octal representation is 242
Q U O T E S j
SPACE \ = The blank character represented by Octal 240
S P A C E S j
All literal = The literal is a single character, used in MOVE

statements; the receiving field is filled with the given
character

Special character words: The arithmetic operators and relation characters are Reserved
Words. They comprise the following:

1 J a n u a r y 1 9 8 0 4 - 9 F D R 3 0 5 6

4 FUNDAMENTAL CONCEPTS OF COBOL

Operators Meaning
Arithmetic

+ Addition
— Subtraction* Multiplication
/ Division

Relation
= is equal to
< is less than
> is greater than

Programmer-defined words
A programmer-defined word is one supplied by the user to satisfy the format of a clause or
statement. Each is constructed according to the rules for Word Formation. The categories for
programmer-defined words include:

• Level-numbers
• Data-names
• File-names
• Condtion-names
• Mnemonic-names
• Paragraph-names
• Section-names

Level numbers: For the purposes of processing, the contents of a file are divided into logical
records. The level concept is inherent in the structure of a logical record, in that it allows the
specification of record subdivisions for the purpose of data reference.
Once a subdivision is specified, it may be further subdivided to permit more detailed data
referral. The most basic subdivision of a record, that which cannot be futher subdivided, is
an elementary item. Data items which contain subdivisions are known as group items.
Level-numbers are one or two character, programmer-defined words. All level-numbers are
numeric. They group items within the data hierarchy of the Record Description. Since
records are the most inclusive data items, level-numbers for records begin at 01.
Less inclusive groups are assigned numerically higher level-numbers. Level-numbers of
items within groups need not be consecutive. A group whose level is 02 includes all groups
and elementary items described under it until a level number less than or equal to 02 is
encountered.
Separate entries are written in the source program for each level. The range of levels is 01
through 49. 1 through 9 may be written as single numbers.
Level numbers 66, 77 and 88 are used in certain applications and are defined together with
additional level-number information in Section 7, DATA DIVISION.
A weekly time card record illustrates the level concept. It is divided into four major items:
name, employee-number, date, and hours, with more specific information appearing for
name and date.

LAST-NAME
N A M E F I R S T - I N I T

MIDDLE-INIT

EMPLOYEE-NUM

TIME-CARD

F D R 3 0 5 6 4 - 1 0 1 J a n u a r y 1 9 8 0

FUNDAMENTAL CONCEPTS OF COBOL 4

~

r

DATE

HOURS-WORKED

MONTH
DAY
YEAR

The time card record might be described (in part) by Data Division entries having the
following level-numbers, data-names, and picture definitions.

01 TIME-CARD.
05 NAME.

10 LAST-NAME PICTURE X (18) .
10 FIRST-INIT PICTURE X.
10 MIDDLE-INIT PICTURE X.
EMPLOYEE-NUM PICTURE 99999.05

05 DATE.
10 MONTH
10 DAY
10 YEAR
HOURS-WORKED

PIC 99.
PIC 99.
PIC 99.
PICTURE 99V9.

Data names: In the preceding time card example, TIME-CARD, NAME, LAST-NAME
FIRST-INIT, etc., are data-names supplied by the programmer.
A data-name is a word assigned by the user to identify a data item used in a program. A data-
name always refers to a field of data, not a particular value.
A data-name is formulated according to the rules for Word Formation; it must begin with an
alphabetic character.
A data-name or the Key Word FILLER must be the first word following the level-number in
each Record Description entry, as shown in the following general format:

level
data-name

FILLER

This data-name is the defining name of the entry. It is the means by which references to the
associated data area (containing the value of a data item) are made.
If some of the characters in a record are not used in the processing steps of a program, then
the data description for these characters need not include a data-name. In this case. FILLER
is written in lieu of a data-name after the level number. Note that FILLER can be used only
at the elementary level; ANSI standards do not permit its use at a group level.
File-names: A file is a collection of data records containing individual records of a similar
class or application. A file-name is defined by an FD entry in the Data Division's File
Section. FD is a Reserved Word which must be followed by an unique programmer-supplied
word called the file-name. Rules for composition of the file-name word are identical to those
for data-names (see Word Formation). References to a file-name appear in Procedure
statements OPEN, CLOSE and READ, as well as in the Environment Division.
Condition-names: A condition-name is a name assigned to a specific value, set of values, or
range of values, within a complete set of values which a data item may assume.
A condition-name is defined within the Data Division in level 88 entries. Rules for the
formation of condition-name words are the same as those specified in Word Formation.
Additional information concerning condition-names, and those procedural statements
employing them, is given in the sections on the Data and Procedure Divisions.

1 January 1980 4-11 FDR 3056

4 FUNDAMENTAL CONCEPTS OF COBOL

Mnemonic-names: A mnemonic-name is assigned in the Enviornment Division under
SPECIAL-NAMES for reference in ACCEPT or DISPLAY statements. A mnemonic-name is
composed according to the rules for Word Formation.
Procedure names: Procedure-names in the form of paragraph-names and section-names are
words which identify paragraphs and sections, respectively, in the Procedure Division.
They may be up to 30 characters long, and may be all alphabetic, all numeric, or some
combination of the two.

Literals
A literal is a programmer-defined constant value. It is not identified by a data-name in a
program, but is completely defined by its own identity. A literal is either non-numeric or
numeric.
Non-numeric literals: A non-numeric literal must be bounded by matching quotation marks
or apostrophes and may consist of any combination of characters in the ASCII set, except
apostrophe or quotation marks,, respectively. All spaces enclosed by the quotation marks are
included as part of the literal. A non-numeric literal must not exceed 120 characters in
length.
The following are examples of non-numeric literals:

"ILLEGAL CONTROL CARD"
'CHARACTER-STRING'
"123"
•1001'
"3.1414"
'- 6'
"DO'S & DON'TS"
'PLEASE DON"T SQUEEZE THE CHARMIN'

Each character of a non-numeric literal (following the introductory delimiter) may be any
character other than the delimiter. That is, if the literal is bounded by apostrophes, then
quotation (') marks may be within the literal and vice versa. Length of a non-numeric literal
excludes the delimiters; length minimum is one.
A succession of two delimiters ('*) within a literal is interpreted as a single representation
of the delimiter within the literal. The last example above illustrates this point.
Only non-numeric literals may be "continued" from one line to the next. When a non-
numeric literal is of a length such that it cannot be contained on one line of a coding sheet,
the following conventions apply to the next line of coding (continuation line):

• A hyphen is placed in position 7 of the continuation line.
• A delimiter is placed in B Area preceding the continuation of the literal.

In the absence of continuation characters and delimeters, the non-numeric literal is
required to continue for five lines. On any continuation line, A Area should be blank.
Numeric literals: A numeric literal must contain at least one and not more than 18 digits. A
numeric literal may consist of the characters (digits) 0 through 9 (optionally preceded by a
sign) and/or the decimal point. It may contain only one sign character and only one decimal
point. The sign, if present, must appear as the leftmost character of the numeric literal. If a
numeric literal is unsigned, it is assumed to be positive.
A decimal point may appear anywhere within the numeric literal, except as the rightmost
character. If a numeric literal does not contain a decimal point, it is considered to be an
integer.

F D R 3 0 5 6 4 - 1 2 1 J a n u a r y 1 9 8 0

FUNDAMENTAL CONCEPTS OF COBOL 4

If a literal conforms to the rules for the formation of numeric literals, but is enclosed in
quotation marks, it is a nonnumeric literal and it is treated as such by the compiler.
The following are examples of numeric literals:

72 + 1011 3.14159 - 6 - .333 0.5

By use of the Environment specfication DECIMAL-POINT IS COMMA, the functions of the
period and comma characters are interchanged, putting the "European" notation into effect.
In this case, the value of "pi" would be 3,1416 when written as a numeric literal.

Qualification of names
The user must be able to identify, uniquely, every name which defines an element in a
COBOL source program. The name may be mads unique in its spelling or hyphenation; or.
procedural reference may be accomplished-by use of qualifier names.
In the following example, the data-name. YEAR, will require qualification for procedural
reference:

01 EMPLOYE E-R ECORD
05 NAME
05 ADDRESS
05 HIRE-DATE

10 YEAR
10 MONTH
10 DAY

05 TERMINATION-DATE
10 YEAR
10 MONTH
10 DAY

YEAR OF HIRE-DATE is a qualified reference which would differentiate between year
fields in HIRE-DATE and TERMINATION-DATE.
Qualifiers are preceded by the word OF or IN. Successive data-name or condition-name
qualifiers must designate lesser level-numbered groups which contain all preceding names
in the composite reference. That is, HIRE-DATE must be a group item (or file-name)
containing an item called YEAR. Paragraph-names may be qualified by their containing
section-name. Therefore, two identical paragraph-names cannot appear in the same section.
The rules for qualification are:

• Each qualifier must be of a successively more inclusive level within the
same hierarchy as the name it qualifies.

• The same name must not appear at two levels in a hierarchy.
• If a data-name or a condition-name is assigned to more than one item in a

source program, the data-name or condition-name must be qualified each
time it is referred to in the Procedure, Environment, and Data Divisions
(except in the REDEFINES clause where qualification must not be used).

• A data-name cannot be subscripted when it is being used as a qualifier.
• A name can be qualified even though it does not need qualification. If

more than one combination of qualifiers can make a name unique, any
combination can be used. The complete set of qualifiers for a data name
must not be the same as any partial set of qualifiers for another data-name.

• A qualified name may only be written in the Procedure Division.

1 J a n u a r y 1 9 8 0 4 _ 1 3 F D R 3 0 5 6

FUNDAMENTAL CONCEPTS OF COBOL

• The maximum number of qualifiers is one for a paragraph-name, five for
a data-name or condition-name. File-names, mnemonic-names, and sec
tion-names must be unique.

Classes of data
The five categories of data-items (alphabetic, numeric, numeric edited, alphanumeric, and
alphanumeric edited), as specified in the PICTURE clause, are grouped into three classes:
alphabetic, numeric, and alphanumeric. For alphabetic and numeric data items, classes and
categories are the same. The alphanumeric class includes the categories of alphanumeric
edited, numeric edited and alphanumeric (without editing). Every elementary item except
for an index data item belongs to one of the classes and, further, to one of the categories. The
class of a group item is treated at object time as alphanumeric regardless of the class of
elementary items subordinate to that group item. The following chart depicts the rela
tionship of the class and categories of data items.

Level of data

Elementary

Nonelementary
(Group)

Class
Alphabetic
Numeric

Alphanumeric

Alphanumeric

Category
Alphabetic
Numeric
Numeric Edited
Alphanumeric Edited
Alphanumeric
Alphabetic
Numeric
Numeric Edited
Alphanumeric Edited
Alphanumeric

Data levels
The two major levels of data are group and elementary:
Group item: A group item is defined as one having further subdivisions, so that it contains
one or more elementary items. In addition, a group item may contain other groups. An item
is a group item if, and only if, its level number is less than the level number of the
immediately succeeding item. If an item is not a group item, then it is an elementary item.
The maximum size of a group is 32,767 characters.

Elementary item: An elementary item is a data item containing no subordinate items. An
elementary item must contain a PICTURE clause, except when usage is described as
COMPUTATIONAL (binary), or INDEX.

Categories of data
The classes of data are: alphabetic, numeric, alphanumeric. Within these, the categories of
data are: alphabetic, numeric, numeric edited, alphanumeric edited and alphanumeric.

Alphabetic item: An alphabetic item consists of any combination of the 26 characters of the
English alphabet and the space character.
Numeric item: A maximum number of 18 digits is permitted; the exact number of digit
positions is defined by the specification of 9's in the picture-string. For example, PICTURE
999 defines a 3-digit item whose maximum decimal value is nine hundred and ninety-nine.

FDR 3056 4-14 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL

r Numeric edited item: An edited numeric item contains only digits and/or special editing
characters. It must not exceed 30 characters in length. A numeric edited item can be used
only as a receiving field for numeric data.
Alphanumeric edited item: This is an alphanumeric item with editing characters contained
in the PICTURE description.
Alphanumeric item: An alphanumeric item consists of any combination of characters,
making a character string.

Data representation
Data is further categorized by the format in which it is stored in the computer. The formats
are: external decimal, internal decimal, binary and index. These formats are directly
related to usage, as outlined below.

U s a g e i s M a c h i n e d e s c r i p t i o n
D I S P L A Y E x t e r n a l d e c i m a l
COMPUTATIONAL Binary
I N D E X B i n a r y
COMPUTATIONAL-3 Internal decimal

External decimal item: An external decimal item is one in which one byte (8 binary bits) is
employed to represent one digit as well as the sign. It can be a group or an elementary item.
The USAGE for an external decimal item is always DISPLAY.
Internal decimal item: An internal decimal item is packed decimal format. It is defined by
inclusion of the COMPUTATIONAL-3 USAGE clause.
A packed decimal item defined by n 9's in its PICTURE occupies n/2+1 bytes in memory. All
bytes, except the rightmost, contain a pair of digits, each digit being represented by the
binary equivalent of a valid digit value from 0 to 9. For this reason, when using packed
decimal, the optimum space allocation should be an odd size field.
In the rightmost byte of a packed item, the left half contains the item's low-order digit, while
the right half contains a representation of the sign. An operational sign capability is always
present for a packed field, even if the picture lacks the leading character S.
Binary item: A binary item uses the base 2 system to represent an integer not in excess of
32,767. It occupies one 16-bit word. The leftmost bit of the reserved area is the operational
sign. No PICTURE clause is required; usage is COMPUTATIONAL. If a PICTURE clause is
specified, and a decimal point is included, DISPLAY usage is assumed and a warning
message is printed out.
Note that the user is responsible for aligning binary items on word boundaries.
Index item: An index item may not have a PICTURE clause. It also uses a 16-bit binary
representation.
Standard aligment rules
The standard rules for positioning data within an elementary item depend on the category
of the receiving item. These rules are:

1. If the receiving data item is described as numeric:
• The data is aligned by decimal point and is moved to the

receiving digit positions with zero fill or truncation at
either end, as required.

• When an assumed decimal point is not explicitly specified,
the data item is treated as if it had an assumed decimal
point immediately following its rightmost digit. It is aligned
as in the rule directly above.

2. If the receiving data item is numeric edited, the data moved to the edited
data item is aligned by decimal point. Zero filling or truncation, at either

1 J a n u a r y 1 9 8 0 4 - 1 5 F D R 3 0 5 6

4 FUNDAMENTAL CONCEPTS OF COBOL

end, occurs as required within the receiving character postions of the
data item, except where editing requirements cause replacement of the
leading zeros.

3. If the receiving data item is alphanumeric (other than a numeric edited
data item), alphanumeric edited or alphabetic, the sending data is moved
to the receiving character positions and aligned at the leftmost character
position in the data item. Space fill or truncation occurs to the right, as
required.

If the JUSTIFIED clause is specified for the receiving item, these standard rules are
modified as described under JUSTIFIED, Data Division. Examples:
(b =blank, " =implied decimal)

D a t a t o b e R e c e i v i n g fi e l d R e c e i v i n g fi e l d
s t o r e d b e f o r e t r a n s f e r a f t e r t r a n s f e r

ABC
ABCDEF1234
AAABBBCCCDD
AAABBBCCCDDDE

PQRSTUVWXYZ
PQRSTUVWXYZ
PQRSTUVWXYZ
PQRSTUVWXYZ

ABCbbbbbbbb
ABCDEF 1234 b
AAABBBCCCDD
AAABBBCCCDD

The examples above show the results of moving various length alphabetic and alphanumeric
items into an eleven-character field.

D a t a t o b e R e c e i v i n g fi e l d R e c e i v i n g fi e l d
s t o r e d b e f o r e t r a n s f e r a f t e r t r a n s f e r

3 "4
345~678
12345^67890
34 ~
3~4
1234567890
1234567890

987~654
987~654
987~654
987~654
ABC234
987~654
9876~54

003~400
345~678
345~678
034~000
34bbbb
890~000
7890~00

The examples above show the results of moving various length numeric items into a six-
character field.

Algebraic signs
Algebraic signs fall into two categories: operational signs and editing signs. Operational
signs are associated with signed numeric data items and signed numeric literals to indicate
their algebraic properties. Editing signs appear on edited reports to identify the sign of the
item.
The SIGN clause permits the programmer to state explicitly the location of the operational
sign. Editing signs are inserted into a data item through the use of the control symbols of the
PICTURE clause.

Subscripting
Subscripts can be used only when reference is made to an individual element within a list
or table of like elements which have not been assigned individual data-names (see the
OCCURS clause in DATA DIVISION and TABLE HANDLING).
The subscript can be represented either by a numeric literal which is an integer, or by a
data-name which may be qualified but not subscripted.
The subscript may be signed and, if signed, it must be positive. The lowest possible subscript
value is 1. This value points to the first element of the table. The next sequential elements

FDR 3056 4-16 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

r

of the table are pointed to by subscripts whose values are 2, 3 The highest permissible
subscript value, in any particular case, is the maximum number of occurrences of the item
as specified in the OCCURS clause.
The subscript which identifies the table element is delimited by the balanced pair of
separators, left parenthesis and right parenthesis, following the table element data-name.
When more than one subscipt is required, they are written in the order of successively less
inclusive dimensions of the data-organization.
The format is:

data-name

condition-name
(subscrlpt-1 [, subscrlpt-2 [, subscript-3]])

Indexing
References can be made to individual elements within a table of like elements by specifying
indexing for that reference. An index is asigned to that level of the table by using the
INDEXED BY phrase in the definition of a table. A name given in the INDEXED BY phrase
is known as an index-name and is used to refer to the assigned index. The value of an index
corresponds to the occurrence number of an element in the associated table. An index-name
must be initialized before it is used as a table reference. An index-name can be given an
initial value by either a SET, a SEARCH ALL, or a Format three Perform statment.
Prime COBOL supports two types of indexing: direct and relative. Direct indexing is
specified by using an index-name in the form of a subscript. Relative indexing is specified
when the index-name is followed by a space, followed by one of the operators + or -,
followed by another space, followed by an usigned integer numeric literal all delimited by
the balanced pair of separators left parenthesis and right parenthesis following the table
element data-name. The occurrence number resulting from relative indexing is determined
by incrementing or decrementing by the value of the literal, the occurrence number
represented by the value of the index. When more than one index-name is required, they
are written in the order of successively less inclusive dimensions of the data organization.
When a statement, which refers to an indexed table element,is executed, the value in the
associated index must neither be less than zero, nor greater than the highest occurrence
number of an element in the table. This restriction also applies to the values resultant from
relative indexing.
The general format for indexing is:

data-name / \ Index-name-1 [J ± f literal-2]\ (icondition-name \ I literal-1

index-name-2 [j ± f literal-4]

literal-3

index-name-3 [j ± } literal-6]

literal-5

1 January 1980 4-17 FDR 3056

4 FUNDAMENTAL CONCEPTS OF COBOL

Restrictions on qualification, subscripting and indexing.
• A data-name must not itself be subscripted nor indexed when that data-

name is being used as an index, subscript or qualifier.
• Indexing is not permitted where subscripting is not permitted.
• An index may be modified only by the SET, SEARCH, and PERFORM

statements. Data items described by the USAGE IS INDEX clause permit
storage of the values associated with index-names. Such data items are
called index data items.

ARITHMETIC EXPRESSIONS
Definition
An arithmetic expression must be an identifier or a numeric elementary item, a numeric
literal, such identifiers and literals separated by arithmetic operators, two arithmetic
expressions separated by an arithmetic operator, or an arithmetic expression enclosed in
parentheses. Any arithmetic expression may be preceded by a unary operator. The
permissible combinations of variables, numeric literals, arithemetic operators and paren
theses are given in Table 4-1.

Table 4-1. Symbol combinations in Arithmetic Expressions
FIRST SECOND SYMBOL
SYMBOL Variable * / - + Unary + OR -
Variable
* / + -
Unary + or -
(
)

In the table above, P = permissible, X = invalid. Variable indicates an identifier or literal.
Identifiers and literals appearing in an arithmetic expression must represent either numeric
elementary items or numeric literals on which arithmetic may be performed.

Arithmetic operators
The specific characters below represent the binary and unary arithmetic operators. They
must be preceded and followed by at least one space.

Meaning
Addition
Subtraction
Multiplication
Division
Meaning
The effect of multiplication by numeric literal +1.
The effect of multiplication by numeric literal -1.
Meaning

() Used to enclose expressions to control the se
quence in which conditions are evaluated.

Follow these general rules on arithmetic expressions:
Parentheses may be used in arithmetic expressions to specify the order in which elements
are to be evaluated. Expressions within parentheses are evaluated first; and within nested
parentheses, evaluation proceeds from the least inclusive set to the most inclusive set. When

Binary arithmetic
+

/
Unary arithmetic
+

Parenthesis

FDR 3056 4-18 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

r

parentheses are not used, or parenthesized expressions are at the same level of inclusive-
ness, the following hierarchical order of execution is implied:

1st - Unary plus and minus
2nd -Multiplication and Division
3rd - Addition and Subtraction

When the sequence of execution is not specfied by parentheses, the order of execution of
consecutive operations of the same hierarchical level is from left to right. Example:

A + B / (C - D * E)

This expression is evaluated in the following ordered sequence:
1. Compute the product D times E, considered as intermediate result Rl.
2. Compute intermediate result R2 as the difference C - Rl.
3. Divide B by R2, providng intermediate result R3.
4. The final result is computed by addition of A to R3.

Without parentheses, the expression

A + B / C - D * E

is evaluated as:
Rl = B/C
R2 = A+Rl
R3 = D*E

final result = R2 - R3
When parentheses are employed, the following punctuation rules should be used:

1. A left parenthesis is preceded by one or more spaces.
2. A right parenthesis is followed by one or more spaces.

The expressions 'A - B - C is evaluated as '(A - B) - C. Unary operators are permitted.
Example:

COMPUTE A = + C + 4.6 COMPUTE X = - Y

Operators, variables, and parenthesis may be combined in arithmetic expressions as
summarized in Table 4-1.
An arithmetic expression may begin only with the symbol (+ - or a variable; it may end only
with a) or a variable. There must be one-to-one correspondence between left and right
parentheses of an arithmetic expression such that each left parenthesis is to the left of its
corresponding right parenthesis.

Arithmetic statements
The arithmetic statements are the ADD, COMPUTE, DIVIDE, MULTIPLY, and SUBTRACT
statements. These have several common features.

1. The data descriptions of the operands need not be the same; any
necessary conversion and decimal point alignment is supplied through
out the calculation.

2. The maximum size of each operand is 18 decimal digits. The composite of
operands, which is a hypothetical data item resulting from the super-
imposition of specified operands in a statement aligned on their decimal
points, must not contain more than 18 decimal digits.

1 J a n u a r y 1 9 8 0 4 - 1 9 F D R 3 0 5 6

4 FUNDAMENTAL CONCEPTS OF COBOL

Overlapping operands
When a sending and a receiving item in an arithmetic statement or an INSPECT, MOVE,
SET, STRING, UNSTRING, or other statements share a part of their storage areas, the result
of the execution of such a statement is undefined and unpredictable.

CONDITIONAL EXPRESSIONS

Definition
Conditional expressions identify conditions which are nested to enable the object program
to select between alternate paths of control depending upon the truth value of the condition.
Conditional expressions are specified in the IF, PERFORM, and SEARCH statements.

Simple conditions
The simple conditions are the relation, class, condition-name, and sign conditions. A simple
condition has a truth value of 'true' or 'false'. The inclusion in parentheses of simple
conditions does not change the simple truth value.

Relation condition: A relation condition has this format:

operand relation operand

where operand is a data-name, literal or figurative-constant. A relation condition has a truth
value of 'true' if the relation exists between the operands. Comparison of two numeric
operands is permitted regardless of the formats specified in their respective USAGE
clauses. However, for all other comparisons, the operands must have the same usage.

Relation has three basic forms, expressed by the relational symbols: equals (=). less than
(<). or greater than (>).

Relational Operator Meaning
= i s e q u a l t o
< i s l e s s t h a n
> i s g r e a t e r t h a n
NOT = is not equal to
NOT < is greater than, or equal to
NOT > is less than, or equal to

Usages of Reserved Word phrasings EQUAL TO, LESS THAN, and GREATER THAN are
accepted equivalents of = < > , respectively. Any form of the relation may be preceded by
the word IS, optionally.

Note
Although required where indicated in formats, the relational
characters '<','>', and '=' are not underlined in this text.

The first operand of a conditional expression is called the subject of the condition; the
second operand is called the object of the condition. The relation condition must contain at
least one reference to a variable.
The relational operator specifies the type of comparison to be made in a relation condition.
A space must precede and follow each reserved word comprisng the relational operator.
When used, 'NOT' and the next key word or relation character form one relational operator
defining the comparison to be executed for truth value; e.g., 'NOT EQUAL' is a truth test for
an 'unequal' comparison; 'NOT GREATER' is a truth test for an 'equal' or 'less' comparison.

F D R 3 0 5 6 4 - 2 0 1 J a n u a r y 1 9 8 0

* *

'

FUNDAMENTAL CONCEPTS OF COBOL 4

r

Numeric comparisons: For numeric operands, a comparison is made with respect to their
algebraic value. The length of the literal or arithmetic expression operands, in terms of
number of digits represented, is not significant. Zero is considered a unique value
regardless of the sign.
Comparison of these operands is permitted irrespective of the manner in which their usage
is described. Unsigned numeric operands are considered positive for purposes of com
parison.
The data operands are compared after assignment of their decimal positions.
An index-name or index item may appear in a numeric comparison
(See Section 7 for details.)
Non-numeric comparisons: For non-numeric operands, a comparison is made with respect
to Prime collating sequence of characters. The octal value associated with each ASCII
character in the Prime computer is the basis for the sequence. (Refer to Appendix C for all
ASCII character representations and the Prime collating sequence.)
If the operands are of unequal size, comparison proceeds as though the shorter operand
were extended on the right by sufficient spaces to make the operands of equal size.
The data class (see Data Representation of this Section) of the two operands, where one is
a literal, must be the same.
Class condition: The class condition determines whether the contents of a data-name are
numeric or alphabetic. A numeric data item consists entirely of the digits 0 through 9. with
or without the operational sign. An alphabetic data item consists entirely of the alphabetic
characters A through Z and the space. The general format for the class conditions is:

data-name IS [NOT] < 1 NUMERIC)
1 ALPHABETIC V

The data-name must be described, implicitly or explicity, as USAGE IS DISPLAY.
The NUMERIC test cannot be used with a data-name described as alphabetic or as a group
item composed of signed elementary items.
If the PICTURE clause of the data-name being tested does not contain an operational sign,
the data-name is determined to be numeric only if the contents are numeric and an
operational sign is not present.
If the PICTURE clause of the data-name being tested does contain an operational sign, the
data-name is determined to be numeric only if the contents are numeric and a valid
operational sign is present.
The ALPHABETIC test cannot be used with a data-name described as numeric. The data-
name being tested is determined to be alphabetic only if the contents consists of any
combination of the alphabetic characters and the space.
Condition-name condition: In a condition-name condition, a conditional variable is tested to
determine whether or not its value is equal to one of the values associated with a condition-
name. The general format for the condition-name condition is as follows, where condition-
name is defined by a level 88 Data Division entry:— .

IF condition-name statement(s)

If the condition-name is associated with a range or ranges of values, then the conditional
variable is tested to determine whether or not its value falls in this range, including the end
values. (See Section 7 for details.)

1 J a n u a r y 1 9 8 0 4 - 2 1 F D R 3 0 5 6

4 FUNDAMENTAL CONCEPTS OF COBOL

The rules for comparing a conditional variable with a condition-name value are the same as
those specified for relation conditions.
The result of the test is true if one of the values corresponding to the condition-name equals
the value of its associated conditional variable. Condition-names are allowed in the File
Section and Linkage Section where VALUE clauses are not.
Sign condition: The sign condition determines whether or not the algebraic value of an
arithmetic expression is less than, greater than, or equal to zero. The general format for a
sign condition is as follows:

POSITIVE
data-name IS [NOT] <J NEGATIVE

ZERO

Complex conditions
A complex condition is a concatenation of simple conditions, combined conditions and/or
complex conditions with logical connectors (logical operators 'AND' and 'OR') or negating
these conditions with logical negation (the logical operator 'NOT').The truth of a complex
condition is that truth value which results from the interaction of all the stated logical
operators on the individual truth values of simple conditions, or the intermediate truth
values of conditions logically connected or logically negated. Five levels of parentheses are
permitted in complex conditions.
The logical operators are:

Meaning
Logical conjunction; the truth value is 'true' if both
of the conjoined conditions are true; 'false' if one
or both of the conjoined conditions is false.
Logical inclusive OR; the truth value is 'true' if one
or both of the included conditions is true; 'false' if
both included conditions are false.
Logical negation is the reversal of the truth value:
i.e., the truth value is 'true' if the condition is false,
and 'false' if condition is true.

Logical operators must be preceded and followed by a space.
Negated simple conditions: The general format of a negated simple condition is:

Logical operator
AND

OR

NOT

NOT simple-condition

Thus, the simple condition is negated through the use of the logical operator NOT.
The truth value of a negated simple condition is the opposite of the truth value for a simple
condition; i.e., true if the simple condition is false,and false if the simple condition is true.
Inclusion in parenthesis of a negated simple condition does not affect the truth value.
Combined and negated combined conditions: Combined conditions are simple conditions
connected by one of the logical operators AND or OR. A combined condition has the format:

AND
condition-1 J J> [NOT] conditlon-2

OR

FDR 3056 4-22 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

where condition is:
• A simple condition
• A negated simple condition
• A combined condition
• A negated combined condtion, i.e., the logical operator NOT followed by a

combined condition enclosed in parentheses
• Combinations of the above.

Table 4-2 below sets forth the permissible combinations of conditions, logical operators and
parentheses.

Table 4-2. Permissibl e com binations of conditions, logical operations and parentheses
Conditional Using a left to right sequence of elements

ELEMENT Expression When not first. When not last.
Local ion the element can be

immediately preceded
the element can be
immediately followed

First Last only by: only by:
Simple-condition Yes Yes OR, NOT, AND, (OR, AND,)
OR and AND No No Simple-condition,) Simple-condition,

NOT. (
NOT Yes No OR, AND, (Simple-condition, (
(Yes No OR. NOT. AND, (Simple-condition,

NOT. (
) No Yes Simple-condition.) OR, AND.)

Multiple conditions: Multiple conditions refer to complex conditions grouped in paren
theses; as previously stated, parentheses are permitted to five levels.
When more than five levels of parentheses are required, explicit grouping, condition-names,
nested IF statements, or some combination of the above should be substituted.
For example, in the statement

IF a = b AND (c - d OR e = f)
explicit grouping may be achieved by coding

IF a - b AND c = d OR a = b AND e = f

Abbreviated combined relation conditions
Abbreviated combined relation conditions refer to conditions with implied subjects. That is.
the omission of the subject of the relation, or the omission of both the subject and the
relational operator of the relation condition.
The format for a abbreviated combined relation condition is:

AND
relation-condition)> [NOT] [relational-operator] object...

OR

Within a sequence as described above, either form of abbreviation may be used: the
omission of subject, or the omission of subject and relational operator.
The effect of such abbreviations is that of inserting the previously stated subject in place of
the omitted subject, or the previous stated relational operator.

1 January 1980 4-23 FDR 3056

FUNDAMENTAL CONCEPTS OF COBOL

All insertions terminate once a complete simple condition is encountered within a complex
condition.
In all instances, the results must comply with the rules outlined in Table 4-2 above.
Negated relation conditions arise from the use of the word NOT in an abbreviated combined
relation condition. They are evaluated as follows:

• NOT participates as part of the relational operator if the word immediately
following NOT is GREATER, > , LESS, < , EQUAL, or eq;

• Not is interpreted as a logical operator if the above condition does not
apply, with the result that the implied insertion of subject or relational
operator results in a negated relation condition.

Below are examples of abbreviated combined relation conditions:
Abbreviated Combined
and Negated Combined
Relation Conditions Expanded Equivalent
a = b OR c OR d a = b OR a = c OR a = d

a > b AND NOT < c OR d ((a > b) AND (a NOT < c)) or (a NOT < d)

NOT a = b OR c (NOT (a = b)) OR (a = c)

a NOT EQUAL b OR c (a NOT EQUAL b) OR (a NOT EQUAL c)

NOT (a GREATER b OR < c) NOT ((a GREATER b) OR (a < c))

~ ,

NOT (a NOT > b AND c
AND NOT d)

NOT (((a NOT > b) AND (a NOT > c))
AND (NOT (a NOT > d)))

Note
The reader is cautioned about the ambiguities which arise
from such coding.

Condition evaluation rules
Parentheses can be used to specify the order in which individual conditions of complex
conditions can be evaluated when it is necessary to depart from the implied evaluation
precedence. Conditions within parentheses are evaluated first, and, within nested paren
theses, evaluation proceeds from the least inclusive condition to the most inclusive
condition. When parentheses are not used, or when parenthesized conditions are at the
same level of inclusiveness, the following hierarchical order of logical evaluation is implied
until the final truth value is determined.
1. Truth values for simple conditions are evaluated in the following order:

Relation (following the expansion of any abbreviated relation condition)
Class
Condition-name
Sign

2. Truth values for negated simple conditions are established.
3. Truth values for combined conditions are established:

AND logical operators, followed by
OR logical operators

4. Truth values for negated combined conditions are established.

FDR 3056 4-24 1 January 1980

FUNDAMENTAL CONCEPTS OF COBOL 4

r

5. When the sequence of evaluation is not completely specified by paren
theses, the order of evaluation of consecutive operations of the same
hierarchical level is from left to right.

The following examples apply to the condition evaluation rules:
1. The condition below contains both AND and OR connectors.

IF x = y AND FLAG = ' z* OR SWITCH = 0, GO TO PROCESSING

Execution will be as follows, depending on various data values:

Data Value EXECUTES
X Y FLAG SWITCH PROCESSING
10 10 'Z' YES
10 11 'Z' NO
1(1 11 'Z' YES
10 10 'p' NO
6 3 'p' YES
fi ■p' NO

2. A < B OR C = D OR E NOT > F: The evaluation is equivalent to (A
< B) OR (C = D) OR NOT (E < F) and is true if any of the three
individual parenthesized simple conditions is true.

3. WEEKLY AND HOURS NOT = 0: The evaluation is equivalent, after
expanding level 88 condition-name WEEKLY, to (PAY-CODE = 'W') AND
NOT (HOURS = 0) and is true only if both the simple conditions are true

4. A = 1 AND B = 2 AND G > - 3 OR P NOT EQUAL TO "SPAIN": is
evaluated as
(A = 1) AND (B = 2) AND (G < -3) OR NOT (P = "SPAIN")
If P = "SPAIN", the complex condition can only be true if all three of the
following are true:
However, if P is not equal to SPAIN, the complex condition is true
regardless of values of A, B and G.

1 J a n u a r y 1 9 8 0 4 - 2 5 F D R 3 0 5 6

"■■

Identification division

IDENTIFICATION DIVISION

Function
The Identification Division must be included in every COBOL source program as the first
entry. This division identifies the source program and the resultant output listings.
Additional user information, such as the date the program was written or the program
author, may be included under the appropriate paragraph(s) in the general format shown
below.

Format

ID DIVISION, (or IDENTIFICATION DIVISION.)

PROGRAM-ID. program-name, (no special characters in name)

[AUTHOR, comments.]

[INSTALLATION, comments.]

[DATE-WRITTEN, comments]

[DATE-COMPILED, comments.]

[SECURITY, comments.]

REMARKS, comments.]

^ Syntax rules
1. The Identification Division must begin with ID DIVISION or IDENTI

FICATION DIVISION followed by a period and a space.
2. The PROGRAM-ID paragraph is required and must follow immediately

after the division header.
3. Program-name follows the general rules for Word Formation. It may

be any alphanumeric string. However, the first character must be
alphabetic. Special characters, including the hyphen, are prohibited.
(Only the first six characters of program-name are retained by the
compiler.)

4. All remaining paragraphs are optional. When included, these must be
presented in order shown above.

5. The comments entry can be any combination of characters. Use of the
hyphen in the continuation indicator area is not permitted; however, the
comments entry can appear on one or more lines.

1 January 1980 5-1 FDR 3056

5 IDENTIFICATION DIVISION

General rule
Fixed paragraph names identify the type of information contained in the paragraph.

▶ E x a m p l e

ID DIVISION.
PROGRAM-ID. REF2.
AUTHOR. PRIME COMPUTER.
INSTALLATION. CORPORATE TECHNICAL PUBLICATIONS DIVISION,
DATE-WRITTEN. SEPTEMBER 1, 1979.
DATE-COMPILED. SEPTEMBER 1, 1979.
SECURITY. NONE.
REMARKS. THIS AREA IS USED TO DESCRIBE THE PROGRAM.

F D R 3 0 5 6 5 - 2 1 J a n u a r y 1 9 8 0

Environment division

ENVIRONMENT DIVISION

▶ F u n c t i o n
The Environment Division defines those aspects of a data processing problem which are
dependent upon hardware configurations and considerations.

Format

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.

[SOURCE-COMPUTER, computer-name,]

[OBJECT-COMPUTER, computer-name.]

[SPECIAL-NAMES. [CONSOLE IS mnemonic-name]

[, CURRENCY SIGN IS literal]

[, DECIMAL-POINT IS COMMA]

[.ASCII IS NATIVE]]]

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

j SELECT file-name ASSIGN TO device

[AREA 1
[; R E S E R V E i n t e g e r - 1]

_ AREAS.

! SEQUENTIAL

INDEXED
relative

(sequential
[; access mode is <^ random

i DYNAMIC

[; FILE STATUS IS data-name-1]f...

1 January 1980 6-1 FDR 3056

6 ENVIRONMENT DIVISION

[l-O-CONTROL.

SAME AREA FOR file-name-1^, file-name-2},...]]

--

^ Syntax rules
1. The Environment Division must begin with the header, ENVIRONMENT

DIVISION, followed by a period and a space.
2. Mandatory sequence of required and optional paragraphs is shown in

the above format.
Note

In the rare instance when hardware-dependent configura
tions and consideratins do not apply, the entire ENVIRON
MENT DIVISION may be omitted. However, the header,
ENVIRONMENT DIVISION, must be presented all the time.

^ General rule
Each section within the Environment Division begins with its section-name, followed by the
word SECTION, and each paragraph within each section begins with its paragraph-name.

[CONFIGURATION SECTION.
This section is optional. It is required only if one or more of the following three paragraphs
is used.

1. [SOURCE-COMPUTER, computer-name.]

Computer-name serves only as a comment entry. It is used to identify the
computer for which the COBOL program is written.

2. [OBJECT-COMPUTER, computer-name.]

Computer-name serves only as a comment entry. It is used to identify the
computer on which the COBOL program will be executed.

3. [SPECIAL-NAMES.

This paragraph is optional. It is required only if one or more of the
following four statements is used.

• [CONSOLE IS mnemonic-name]

Mnemonic-name is a programmer-defined word which will
be associated with CONSOLE throughout the program.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES. CONSOLE IS TTY.

FDR 3056 6-2 1 January 1980

ENVIRONMENT DIVISION 6

PROCEDURE DIVISION.

DISPLAY YEAR OF HIRE-DATE UPON TTY,

The coding above would cause the field, YEAR OF HIRE-
DATE, to be output on the CONSOLE.

Note
CONSOLE IS is an optional statement. If omitted, the com
puter will automatically associate CONSOLE (terminal) with
ACCEPT and DISPLAY.

• [CURRENCY SIGN]S literal]

Literal represents the currency sign to be used in the
PICTURE clause. It is a single character, non-numeric
literal which will be used to replace the dollar sign as the
currency sign. The designated character may not be a quote
mark, or any of the characters defined for PICTURE repre
sentations.

• [DECIMAL-POINT IS COMMA]

The "European" convention of separating integer and frac
tion positions of numbers by the comma character, rather
than the decimal point or period, is specified by use
of the DECIMAL-POINT IS COMMA clause.

Note
The Reserved Word, IS, is required in entries for currency
sign definition and decimal-point convention specification.

• [ASCII IS NATIVE]}]

The entry, ASCII IS NATIVE, specifies that the data repre
sentation adheres to the American Standard Code for
Information Interchange as shown in Appendix C. This
convention is assumed even if the entry is not present.

[INPUT-OUTPUT SECTION.
The INPUT-OUTPUT SECTION is used when there are external data files. It allows
specification of peripheral devices and information needed to transmit and handle data
between the devices and the program. The section has two paragraphs: FILE-CONTROL and
I-O-CONTROL.

FILE-CONTROL.
This entry names each file and specifies its device medium, allowing specified hardware
assignments. It can also specify other file-related information, such as number of input-
output areas allocated, file organization, and method of file access. The format chosen is

1 J a n u a r y 1 9 8 0 6 - 3 F D R 3 0 5 6

6 ENVIROMENT DIVISION

dependent upon file organization. Each file requires one SELECT statement and the
appropriate sequence of optional clauses.

Format one

SELECT file-name

ASSIGN TO device

r; RESERVE integer-1
[~AREA

AREAS

[; ORGANIZATION IS SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-1].

Format two

SELECT file-name

ASSIGN TO device

[; RESERVE integer-1
AREA

AREAS

; O l I I S R E L AT I V E

SEQUENTIAL [, RELATIVE KEY IS data-name-1]
[; A C C E S S M O D E I S) (R A N D O M) {]

<^ } , RELATIVE KEY IS data-name-1
\ DYNAMIC)

[; FILE STATUS IS data-name-2].

Format three

SELECT file-name

ASSIGN TO device

[; RESERVE Integer-1
"area "I

AREAS

; ORGANIZATION IS INDEXED

FDR 3056 6-4 1 January 1980

ENVIRONMENT DIVISION 6

SEQUENTIAL
[; ACCESS MODE IS <J RANDOM

DYNAMIC

; RECORD KEY IS data-name-1

[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]

[; FILE STATUS IS data-name-3].

Format four

SELECT file-name

ASSIGN TO device

1. SELECT file-name ASSIGN TO device

File-name is a programmer-defined name described in the Data Division.
Each Data Division FD entry must be specified once in a SELECT
statement and only as a file-name. The ASSIGN TO device clause
associates the file with a storage medium or input/output hardware.

Device
TERMINAL

READER
PRINTER
PUNCH
MT9
PFMS *
OFFLINE-PRINT

Hardware Device
CRT TERMINAL
TTY TERMINAL
CARD READER (for future designation
SYSTEM PRINTER
CARD PUNCH (for future designation)
9 TRACK MAG. TAPE DRIVE
DISK STORAGE
FORMS PRINTER OUTPUT

* PFMS = PRIME FILE MANAGEMENT SYSTEM

Examples:

SELECT file-name ASSIGN TO TERMINAL.
SELECT file-name ASSIGN TO PFMS.
SELECT file-name ASSIGN TO MT9.

2 [RESERVE Integer-1
AREA

AREAS

1 January 1980 6-5 FDR 3056

6 ENVIRONMENT DIVISION

The RESERVE clause allows the user to specify the number of input-
output buffer areas to be allocated. For tape applications only, the
integer value can be from 1 to 7, permitting up to 7 buffers in memory at
one time.
If tape is not involved, the integer must be specified as one. Should the
RESERVE clause be omitted, the default of one buffer area will be
assigned by the compiler.

SEQUENTIAL
3. [ORGANIZATION IS <[RELATIVE J>]

INDEX

The ORGANIZATION clause specifies the type of file organization.
When omitted, the default is SEQUENTIAL.

SEQUENTIAL
4 [ACCESS MODE IS <J RANDOM

DYNAMIC

The sequence in which records are accessed is described through the use
of the ACCESS MODE clause. When omitted, the default is SEQUEN
TIAL.

5. [FILE STATUS IS data-name-11

The FILE STATUS clause permits the user to specify a two character,
unsigned field (data-name-1) described in the Working-Storage Section.
When the FILE STATUS clause is specified in the FILE-CONTROL
paragraph, the operating system moves a value into data-name-1 after the
execution of every statement which references that file either explicitly
or implicitly. Specifically, the FILE STATUS data item is updated during
the execution of the OPEN, CLOSE, READ, WRITE, REWRITE. DELETE
or START statement. This value in data-name-1 indicates to the COBOL
program the status of execution of the statement. The left most character
of the FILE STATUS data item is known as status key 1; the rightmost
character is status key 2. Status key 1 is set to indicate a specific condition
upon completion of the input-output operation; status 2 further describes
the results of the operation.
Valid combinations of key values for each type of file organization are
shown in the File Status Key Definitions, Table C-4, Appendix C.

[I-O-CONTROL.
The I-O-CONTROL paragraph is optional unless SAME AREA is used.

F D R 3 0 5 6 6 - 6 1 J a n u a r y 1 9 8 0

ENVIRONMENT DIVISION 6

r The SAME AREA clause allows the programmer to share the same I/O buffer areas for files
which are not open concurrently. No file may be listed in more than one SAME AREA
clause.

▶ E x a m p l e

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PRIME-750.
CBJECT-COMPUTER. PRIME-750.
SPECIAL-NAMES. CONSOLE IS TTY ,

ASCII IS NATIVE.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT PRINT-FILE ASSIGN TO PRINTER.
SELECT CARD-FILE ASSIGN TO PFMS.
SELECT DIRECTORY-FILE ASSIGN TO PFMS,

ORGANIZATION IS INDEXED,
ACCESS MODE IS DYNAMIC,
RECORD KEY IS PHONE-NUMBER,
ALTERNATE RECORD KEY LAST-NAME,
ALTERNATE RECORD KEY STATE,
ALTERNATE RECORD KEY BIRTH-DATE,
ALTERNATE RECORD KEY FIRST-NAME,
FILE STATUS IS FILE-STATUS.

1 J a n u a r y 1 9 8 0 6 - 7 FDR 3056

Data division

DATA DIVISION

r
^ F u n c t i o n
The Data Division of the COBOL source program defines the nature and characteristics of
the data to be processed by the program. Data to be processed falls into three categories:

1. Data is contained in files and enters or leaves the internal memory of the
computer from a specified area or areas.

2. Data is developed internally and placed into intermediate or working
storage.

3. Constants which are defined by the user.
The Data Division consists of three optional sections. If used, they must appear in the
following order:

1. FILE SECTION. Files and records in files are described.
2. WORKING-STORAGE SECTION. Memory space is allocated for the

storage of intermediate processing results.
3. LINKAGE SECTION. Data available to a called program is described.

Format

DATA DIVISION.

[FILE SECTION.

[file-description-entry,
[record-description-entry]...]...
[sort-file-description-entry,
{record-description-entry}...]...]

[WORKING-STORAGE SECTION.

[level-77-data-description-entry]..
[data-item-description-entry]...]

[LINKAGE SECTION.

[level-77-data-description-entry]
[data-item-description-entry]...]

Syntax rules
1. The Data Division must begin with the header DATA DIVISION, fol

lowed by a period and a space.

1 January 1980 7-1 FDR 3056

DATA DIVISION

2. When included, optional sections of the Data Division must be in the
same order as shown above.

^ General rules
1. Each section within the Data Division begins with its section-name,

followed by a period and a space.
2. The record description entry format used in the File Section is also

applied to the Working-Storage and Linkage Sections.

FILE SECTION

▶ F u n c t i o n
The file section of the Data Division defines the structure of data files.Each file is defined
by a file description entry (FD) or a sort file description entry (SD), and by one or more
associated record description entries.

Format

FILE SECTION.

f file-description-entry. [record-description-entry]...

sort-file-description-entry .j record-description-entry [...

Syntax rules
1. The File Section is optional. If used, it must begin with the header. FILE

SECTION, followed by a period and a space.
2. The Kile Section contains FD and SD entries, each one must be im

mediately followed by one or more associated record description entries.
The total number of FD and/or SD entries in the File Section cannot
exceed 126.

^ General rule
Each file associated with an I/O device must be represented by an FD or an SD entry.

Note
The format and the clauses required in an FD entry for a
typical file are described in this section. For a complete
discussion of an SD entry for a sort-file, see section 11, SORT
MODULE.

FILE DESCRIPTION

^ F u n c t i o n
The FD file description provides information concerning the physical structure, identi
fication, and record names pertaining to a typical file.

FDR 3056 7-2 1 January 1980

DATA DIVISION 7

~

r

Format

[FD file-name [UNCOMPRESSED]

I \ STANDARD
;LABEL

RECORDS ARE OMITTED

RECORDS
[; BLOCK CONTAINS [i n tege r -1 TO] i n tege r -2 < j

) CHARACTERS I

[; RECORD CONTAINS [integer-3 TO] integer-4 CHARACTERS]

[; VALUE OF FILE-ID IS Hteral-1]

[; OWNER IS literal-2]

RECORD IS
[; DATA <(> data-name-1 [, data-name-2] . . .]

RECORDS ARE \

[; CODE-SET IS ASCII]].

Syntax rules
1. The level indicator FD identifies the beginning of a file description and

must precede the file-name.
2. File-name follows the general rules for Word Formation.
3. The UNCOMPRESSED option is used only with READ files. It allows a READ

based on record length rather than on compression control characters.
4. The FI) entry is a sequence of clauses which must be terminated by a

period; up to 126 Kl) entries are permitted.
5. The LABEL RECORD clause is required: other clauses which follow file

name are optional.
6. If the DATA RECORD clause is used, one or more record description

entries must follow the file description entry.
7. These rules apply to the overall Kile Section of a typical file.
8. If there are no files in the program or if the main program contains an EXIT

PROGRAM statement then C$IN will not ask for fi le assignments and wil l take
the default VALUE OF FILE-ID value as defined in the FD. If there is not a
VALUE OF FILE-ID in a file-description clause, the compiler will generate
file-ids in the series Fl, F2. F3, and so on. Files assigned to the printer are
assigned file-ids in the series progOl, prog02. and so on, where prog is the
program-id.

UNCOMPRESSED

Function
The UNCOMPRESSED clause enables a disk READ based on record length, rather than on
compression control characters.

1 July 1962 7-3 FDR 3056

7 DATA DIVISION

Format

FD file-name [UNCOMPRESSED]

General rules

1. The UNCOMPRESSED clause is optional. When used, it enables a READ
based on record length rather than on compression control characters.

2. The UNCOMPRESSED option should be used when reading sequential I/O
files containing packed or binary data.

Note
The UNCOMPRESSED reserved word is a Prime extension to
ANSI COBOL.
Never use the standard utilities such as EDITOR (ED) on a file
which is to be accessed UNCOMPRESSED for a COBOL program.

LABEL RECORDS

^ F u n c t i o n
The LABEL RECORDS clause specifies whether labels are present for the file.

Format

RECORD IS
LABEL t t

STANDARD

RECORDS ARE \ / OMITTED

▶ Syntax rule
This clause is required in every file description entry.

▶ General rules
1. OMITTED specifies that no explicit labels exist for the file or device to

which the file is assigned.
2. STANDARD specifies that a label exists for the file and that the label

conforms to system specifications. The STANDARD option must be
specified for all files assigned to DISK (PFMS) or tape. See Table 7-1
below.

Note
Standard labels are automatically provided for disk files. See
Appendix G, LABEL COMMAND, for information on stan
dard labels for magtape.

FDR 3056 7-4 I July 1982

DATA DIVISION 7

-

r

Table 7-1. Label Options
Device
Terminal
Reader
Printer
Punch
MT9 (Tape)
PFMS (Disk)

Standard Omitted

BLOCK CONTAINS
▶ F u n c t i o n
The BLOCK CONTAINS clause specifies the size of a physical record.

FDR 3056 7-4 A 1 July 1982

DATA DIVISION 7

Format

RECORDS
[BLOCK CONTAINS [integer-1 TO] integer-2 <J }]

CHARACTERS

^ Syntax rules
1. The BLOCK CONTAINS clause is optional.
2. The clause can only be used in connection with tape files.

P* General rules
1. The clause may be omitted if the physical record contains one, and only

one, complete logical record.
2. Omission of this clause assumes records are unblocked.
3. When the RECORDS option is used, the compiler assumes that the block

size provides for integer-2 records of maximum size and then provides
additional space for any required control words.

4. When the word CHARACTERS is specified, the physical record size is
specified in terms of the number of character positions required to store
the physical record, regardless of the types of characters used to
represent the items within the physical record.

5. When neither the CHARACTERS nor the RECORDS option is specified,
the CHARACTERS option is assumed.

6. When both integer-1 and integer-2 are used, integer-1 is for documenta
tion purpose only.

RECORD CONTAINS

I F u n c t i o n
The RECORD CONTAINS clause specifies the size of data records.

Format

RECORD CONTAINS [lnteger-3 TO] integer-4 CHARACTERS

General rules
1. Since the size of each data record is defined fully by the set of data

description entries constituting the record (level 01) declaration, this
clause is always optional.

2. Integer-4 may not be used by itself unless all the data records in the file
have the same size. In this case, integer-4 represents the exact number of
characters in the data record. If integer-3 and integer-4 are both shown,
they refer to the minimum number of characters in the smallest size data
record, and the maximum number of characters in the largest size data
record, respectively.

3. The maximum size of a single data record is 32,767 characters.

1 January 1980 7-5 FDR 3056

7 DATA DIVISION

VALUE OF FILE - ID

W~ Function
The VALUE OF FILE-ID clause particularizes the description of an item in the label records
associated with a file, thus allowing for the linkage of internal and external program names.

Format

[VALUE OF FILE-ID is literal-1]

▶ Syntax rule
This clause is mandatory if labels are standard.

▶ General rules
1. Literal-1 associates the internal FD file-name with an external file-name.

It is a non-numeric value which may not exceed eight characters.
2. If there are no file assignments at run-time (explained in Section 3),

literal-1 will become the default value for the internal file-name.

OWNER IS

▶ F u n c t i o n
The OWNER IS clause specifies the User File Directory (UFD) in a Prime system, in which
VALUE OF FILE-ID value is contained.

Format

! Syntax ru le
The OWNER IS clause may be used only with disk files.

▶ General rules
1. Literal-2 is a non-numeric value which may not exceed six characters.
2. The clause is overridden by explicit definition at run-time.
3. If the clause is used, it must follow the above rules. If omitted, a default

of the current UFD may apply.

DATA RECORDS

▶ F u n c t i o n
The DATA RECORDS clause serves only as documentation for the names of data records
and their associated file.

FDR 3056 7-6 1 January 1980

DATA DIVISION 7

Format

RECORD IS
[D ATA < ! } d a t a - n a m e - 1 [, d a t a - n a m e - 2] . . .]

RECORDS ARE

▶ Syntax rule
Data-name-1 and data-name-2 are the names of the data records. They must be specified
by subsequent 01 level-numbers and follow the general rules for Word Formation.

^ General rules
1. The presence of more than one data-name indicates that the file contains

more than one type of data record. These records may have different
sizes, different formats, etc. The order in which they are listed is not
significant.

2. Conceptually, all data records within a file share the same area,
regardless of the number of types of data records within the file.

CODE - SET

▶ F u n c t i o n
The CODE-SET clause specifies the character code set used to represent data on the
external media.

Format

r [CODE-SET IS ASCII]].

▶ General rule
The CODE-SET clause serves only as documentation in this compiler.

RECORD DESCRIPTION

▶ F u n c t i o n
A record description entry describes all elementary and group items in a record, and their
relationship. It is comprised of a set of data description entries, each of which defines the
particular characteristics of a unit of dala, utilizing a series of clauses to detail such
characteristics.

1 January 1980 7-7 FDR 3056

7 DATA DIVISION

Format one

data-name-1
level-number J }> [; REDEFINES data-name-2]

FILLER

[; OCCURS Integer-1 TIMES

ASCENDING j
[> K E Y I S d a t a - n a m e - 3 [, d a t a - n a m e - 4] . . .]

DESCENDING \

[INDEXED BY index-name-1 [, index-name-2]...]]

PICTURE
[;

PIC
IS picture-string] (or character-string)

DISPLAY
COMPUTATIONAL

[; [USAGE IS]) COMP
INDEX
COMPUTATIONAL-3
COMP-3

LEADING
[; [SIGN IS] \ } [SEPARATE CHARACTER]]

TRAILING

SYNCHRONIZED

SYNC

JUSTIFIED

LEFT

RIGHT

[; RIGHT]
JUST

[; BLANK WHEN ZERO]

[; VALUE IS literal].

Format two

66 data-name-1; RENAMES data-name-2 [■
\THROUGH

:
J THRU

data-name-3].

FDR 3056 7-1 1 January 1.980

DATA DIVISION 7

Format three

S VA L U E I S / \ T H R O U G H

> l i te ra l -1 [< } l i te ra l -2]
VA L U E S A R E \ / T H R U

[, literal-3 [
THROUGH

THRU
literal-4]]... .

Format four

VALUE IS
88 condi t ion-name; } \ l i tera l -1 [, l i tera l -2]

VALUES ARE

W" Syntax rules
1. The level-number in Format one may contain a value of 01 through 49, or

77.
2. In Format one, clauses can be written in any order with two exceptions:

The data-name-1 or FILLER clause must immediately follow the level-
number; and the REDEFINES clause, when used, must immediately
follow the data-name-1 clause.

3. In Format one. PICTURE clause must be specified for every elementary
item except when USAGE is described as binary (COMPUTATIONAL).
A group item cannot contain a PICTURE clause.

4. The OCCURS clause cannot be specified in a data description entry
which has a 01, 66, 77. or an 88 level-number.

5. Format two permits alternative possible overlapping groups of elemen
tary items.

6. Formats three and four are used only for condition-names which must
have a level-number 88. Formats three and four may not be combined for
a single level 88 entry.

7. The words THRU and THROUGH are equivalent and interchangeable
Reserved Words.

W~ General rule
A record description entry can appear in the File. Working-Storage, or Linkage Section of
the Data Division. All records in each file referenced by a file description entry (FD) must
be described by record description entries.

1 January 1980 7-9 FDR 3056

7 DATA DIVISION

W" Funct ion
The level-number shows the position of a data-item within the hierarchy of data in a logical
record. It also identifies entries for condition-names, and data items in the Working-Storage
and Linkage Sections.

Format

level-number

Syntax rules
1. A level-number is required as the first element in each data description

entry (see RECORD DESCRIPTION).
2. Data description entries subordinate to an FD entry must have level-

numbers 01 through 49, 66, or 88.
3. Data description entries in the Working-Storage and Linkage Sections

must have level-numbers 01 through 49, 66, 77 or 88.

General rules
1. Level-numbers are used to subdivide a record so that each item in the

record may be referred to. A record can be divided, and each subdivision
further divided, until a basic level is reached which cannot be further
divided. An item at this basic level is called an elementary item. A record
can itself be an elementary item.

2. A group consists of one or more consecutive elementary items; groups
can, in turn, be combined into other groups of two or more group items.
A group consists of a specified group item and all following group and
elementary items with level-numbers greater than that of the specified
group item, and continuing until the next item with a level-number less
than or equal to that of the specified group item is reached.

3. Level-numbers range from 01, the most inclusive level, to 49, the least
inclusive level. Any level-number except 49 can denote a group.

4. The level number 01 identifies the first entry in each Data Description. A
reference to level-number 01 data-name in the Procedure Division is
a reference to the entire record.

5. Multiple level 01 entries subordinate to one FD level indicator represent
implicit redefinitions of the same area.

6. Special level-numbers have been assigned to certain entries where there
is no real concept of hierarchy.

7. Level-number 77 is assigned to identify noncontiguous working storage or
linkage data items. They may be used only as described in Format one of
the data description entry.
Level-number 77 data items are elementary items which cannot be
subdivided.

8. Level-number 88 is assigned to entries which define condition-names
associated with a conditional variable. They can be used only with
Formats three and four of the data description entry.

FDR 3056 7-10 1 January 1980

DATA DIVISION 7

r

Level 88 entries can contain individual values, series of individual
values, or a range of values. Such entries cannot combine ranges and
individual values.
Example:

01 Test-Area PIC X.
88 Test-Value-1 Value T .
88 Test-Value-2 Value ' l ' , '2 ' .
88 Test-Value-3 Value "I1 thru '8'.

88 Test-Value-4 Value '1' thru '4', '6*» '7'.

In the example above, the last 88 level definition is invalid.
A level 88 entry must be preceded by one of the following: Another level
88 entry, where there are several consecutive condition-names per
taining to an elementary item, or, an elementary item.
Every condition-name pertains to an elementary item in such a way that
the condition-name be qualified by the name of the elementary item and
the elementary item's qualifiers. A condition-name is used in the
Procedure Division in place of a relational condition.
A condition-name may pertain to an elementary item (a conditional
variable) requiring subscripts. In this case, the condition-name, when
written in the Procedure Division, must be subscripted according to the
same requirements as the associated elementary item.
The type of literal in a condition-name entry must be consistent with the
data type of the conditional variable. In the following example. PAY
ROLL-PERIOD is the conditional variable. The picture associated with it
limits the value of the 88 condition-name to one digit.

02 PAYROLL-PERIOD PIC IS 9.
8 8 W E E K LY VA L U E I S 1 .
88 SEMI-MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

Using the above description, one may write the procedural condition-
name test:

IF MONTHLY GO TO DO-MONTHLY.

An equivalent statement is:

IF PAYROLL-PERIOD = 3 GO TO DO-MONTHLY.

For an edited elementary item, values in a condition-name entry must be
expressed in the form of non-numeric literals.

9. Level number 66 is assigned to identify RENAMES entries. They can be
used only with Format two of the data description entry.

1 J a n u a r y 1 9 8 0 7 _ H F D R 3 0 5 6

7 DATA DIVISION

Any number of RENAMES entries may be written for a logical record.
They must all immediately follow the last entry of that record.
Data-name-1 cannot be used as a qualifier. Neither data-name-2 nor
data-name-3 may have an OCCURS clause nor be subordinate to an item
with an OCCURS clause. Data-name-2 and data-name-3 must be names
of elementary items or groups of elementary items in the same logical
record and cannot be the same data-name.
The beginning of the area described by data-name-3 must be to the right
of the area described by data-name-2.
A level 66 entry cannot RENAME another level 66 entry or a 77. 88 or 01
level entry.

DATA-NAME/FILLER

^ F u n c t i o n
A data-name specifies the name of the data being described, FILLER specifies an elemen
tary item of the logical record which cannot be referred to explicitly.

Format

data-name

FILLER

i Syn tax ru le
In the File, Working-Storage, and Linkage Sections of the Data Division, a data-name or the
keyword FILLER must be the first word following the level-number in each data description
entry.

▶ General rules
1. FILLER can only be used to name an elementary item in a record. Under

no circumstances can a FILLER item be referred to explicitly. However.
FILLER can be used as a conditional variable because such use does not
require explicit reference to the FILLER item, but rather to its value.

2. A VALUE clause can be used with a FILLER item.

REDEFINES

▶ F u n c t i o n
The REDEFINES clause allows the same computer storage area to be described by different
data description entries.

Format

level-number data-name-1 [; REDEFINES data-name-2]

Note
Level-number, data-name-1 and the semicolon are not part of
the REDEFINES clause, but are included to show the context.

FDJl 3056 7-12 1 January 1980

DATA DIVISION 7

Syntax rules
1. The REDEFINES clause is optional; when specified, it must immediately

follow data-name-1.
2. Level-numbers of data-name-1 and data-name-2 must be identical, but

must not be 66 or 88.
3. This clause must not be used in level-number 01 entries in the File

Section.
4. The data description entry for data-name-1 may contain a REDEFINES

clause.
5. The data description entry for data-name-2 may not contain an OCCURS

clause, nor may data-name-1 be subordinate to an entry which contains
an OCCURS clause.

6. Data-name-2 can be qualified, but not subscripted.

General rules
1. Redefinition starts at data-name-2 and ends when a level-number less

than or equal to that of data-name-2 is encountered. In the followning
example, redefinition of the data-name-2 area by data-name-1 ends when
data-name-3 is encountered:

05 data-name-2 PICTURE A(3) .
05 data-name-1 REDEFINES data-name-2.

10 ITEM-A PICTURE A.
10 ITEM-B PICTURE AA.

05 data-name-3 PICTURE X.

2. The entries giving the new description of the area must not contain
VALUE clauses except in condition-name entries.

3. Redefinition to a depth greater than one level is permitted (see Syntax
Rule 4, above). Thus, the nested REDFINES outlined below is valid:

01 FIELD-A PIC X(10).
01 FIELD-B REDEFINES FIELD-A.

05 FIELD-C PIC X(5)
05 FIELD-D REDEFINES FIELD-C.

10 FIELD-E1 PIC X(3).
10 FIELD-E2 PIC X(2) .

05 FIELD-F PIC X(5).

Note
The REDEFINES clause specifies the redefinition of a storage
area, not of the data items contained therein.

RENAMES

▶ F u n c t i o n
The RENAMES clause permits alternative possibly overlapping groups of elementary items.

1 J a n u a r y 1 9 8 0 7 - 1 3 F D R 3 0 5 6

7 DATA DIVISION

Format

66 data-name-1 RENAMES data-name-2
THROUGH

THRU
data-name-3

Note
Level-number 66 and data-name-1 are not part of the
RENAMES clause, but are included to show the context.

Syntax rules
1. Any number of RENAMES entries may be written for a logical record.

They must all immediately follow the last entry of that record.
2. Data-name-1 cannot be used as a qualifier but can be qualified to the 01

or FD entries. Neither data-name-2 nor data-name-3 may have an
OCCURS clause nor be subordinate to an entry that has an OCCURS
clause in its data description entry.

3. Data-name-2 and data-name-3 must be the names of elementary items or
groups of elementary items in the same record and cannot have the same
data-name.

4. A level 66 entry cannot rename another level 66 entry or a 77. 88 or 01
level entry.

5. The beginning of the area described by data-name-3 must be to the right
of the area described by data-name-2.

Example

01 MASTER.
05 EMP-REC.

10 EMP-NO
10 EMP-NAME.

15 LASTT
15 FIRSTT

10 DEPT-CODE
10 TEL-EXT

05 WORKED-PER-WEEK

PIC 9 (4) .

PIC X(14)
PIC X(ll)
PIC 99.
PIC 9 (4) .
PIC 9 (4) .

66 NAME-TAG RENAMES EMP-NAME THRU DEPT-CODE.

OCCURS

▶ F u n c t i o n s
The OCCURS clause permits the definition of related sets of repeated data, such as tables,
arrays, lists, supplying required information for the application of subscripts or indexes.

FDR 3056 7-14 1 January 1980

DATA DIVISION 7

Format

~

OCCURS integer-1 TIMES

(ascending
f < } KEY IS data-name-1 [, data-name-2]. . .]

I DESCENDING

pNDEXED BY index-name-1 [, index-name-2]...]

Syntax rules
1. Integer-1 must be greater than one and less than 32,767.
2. The OCCURS clause must not be used in a data description entry having

a 01, 66, 77. or an 88 level-number.
3. If the data-name applies to a group item, then all data-names belonging

to the group must be subscripted or indexed whenever they are used.

General rules
1. When the OCCURS clause is used, the data-name which is the defining

name of the entry must be subscripted whenever it appears in the
Procedure Division. If the INDEXED BY phrase is specified, then the
data-name must also be indexed. However, if the data-name is referred
to in a SEARCH Statement, it must not be subscripted or indexed.

2. The OCCURS clause specification causes a fixed length table to be
generated. Its length is equal to the value of integer-1 times the size of
each element. The size of the table illustrated below is 10 x 10 (100):

01 FIRST-TABLE.
05 ELEMENT PIC X(10; OCCURS 10 TIMES.

PICTURE

See Section 10, TABLE HANDLING, for further detailed
discussion of the OCCURS clause.

W" Func t ion
The PICTURE clause describes the general characteristics and editing requirements of an
elementary item.

Format

[
[PICTURE

JP!C
> IS picture-string] (or character-string)

1 January 1980 7-15 FDR 3056

7 DATA DIVISION

Syntax rules
1. A PICTURE clause can be specified only at the elementary item level.
2. A picture-string consists of certain allowable combinations of characters

in the COBOL character set used as symbols. The allowable combina
tions determine the category of the elementary item.

3. The maximum number of character positions allowed in a picture-string
is 30. For example, PIC X(35) and PIC X(3) consist of 5 and 4 PICTURE
characters, respectively.

4. The PICTURE clause must be specified for every elementary item except
binary items.

5. PIC is a valid abbreviation for PICTURE.
6. The asterisk when used as the zero suppression symbol and the clause

BLANK WHEN ZERO may not appear in the same entry.

General rules
1. Data: Five categories of data can described with a PICTURE clause:

Alphabetic, numeric, alphanumeric, alphanumeric edited, and numeric
edited.

• Alphabetic: Picture-string can only contain the characters
A and B; and, item contents must be any combination of the
letters of the English alphabet and the COBOL space
character.

• Numeric: Picture-string can only contain the symbols 9, P,
S, and V. The number of digit positions which may be
represented by picture-string is from 1 to 18; and item
contents must be a combination of the digits 0 through 9.
These may be signed, or not. If signed, the item may be
positive or negative.

• Alphanumeric: Picture-string is a combination of data de
scription characters X, A, or 9, and the item is treated as if
the string contained all X's. Alphanumeric picture-strings
may not employ all 9's or all A's; and, item contents may be
any character from the computers ASCII character set. „^^

e Alphanumeric edited: Picture-string is restricted to certain
combinations and the following symbols: A, X, 9, B, 0, /;
and, item contents are any character from the computer's
ASCII character set.

9 Numeric Edited: The picture-string is a certain combina
tion of the editing symbols: Z . CR DB , $ + * B 0 = - / 9 V
P; and, the picutre-string must contain at least one of the
editing symbols in conjunction with numeric symbols; and.
item contents must be one of the digits.

2. Size: The size of an elementary item (the number of character positions
occupied by the item in standard data format) is determined by the
number of allowable symbols which represent character positions.
An integer, enclosed in parentheses, following the symbols A, X 9 P X *
B / 0 + - or the currency symbol, indicates the number of consecutive
occurrences of that symbol. The following symbols can appear only once
in a given PICTURE: S V . CR DB.

3. Decimal-Point Clause: When DECIMAL-POINT IS COMMA is specified,
the explanations for period and comma are understood to apply to
comma and periods, respectively.

FDR 3056 7 - 1 Q 1 J a n u a r y 1 9 8 0

DATA DIVISION 7

r

r

4. Symbols: Symbols used in a picture-string to define an elementary item
have the following functions:

A Each A represents a character position which contains
only a letter of the alphabet, or a space.

B Each B represents a character position into which the
space character will be inserted.

P Each P indicates an assumed decimal scaling position. It
specifies the location of an assumed decimal point when
the point is not within the number that appears in the
data item. The P is not counted in the size of the data item,
but is counted in determining the maximum number of
digit positions (18) in numeric edited items or numeric
items.
The scaling position character P may appear only to the left
or right of the other characters in the string as a continuous
string of P's within a PICTURE description. The sign charac
ter S and the assumed decimal point V are the only charac
ters which may appear to the left of a leftmost string of P's.
Since the scaling position character P implies an assumed
decimal point (to the left of the P's if the P's are leftmost
PICTURE characters, and to the right of the P's if the P's are
the rightmost PICTURE characters), the assumed decimal
point symbol V is redundant as either the leftmost or right
most character within such a PICTURE description.
Example: If a field in memory contains the digits 37, and the
picture-string for the field is PPP99, the field has the implied
value of .00037. The same field, with a picture-string 99ppp
has an implied value of 37000. In both instances, only digits 37
are actually stored in memory.

S The picture-string symbol S indicates the presence of a sign
in a data item, but implies nothing about the actual format or
location of the sign in storage.
The symbol S is not counted in determining the size of the
elementary item, unless the entry is subject to a SIGN clause.
(See SIGN.)
When used, the S symbol must be written as the leftmost
character in picture-string.

V The character V indicates the position of an assumed decimal
point. Since a numeric item cannot contain an actual decimal
point, an assumed decimal point is used to provide informa
tion concerning the alignment of items involved in computa
tions. Storage is never reserved for the character V. Only one
V, if any. is permitted in any single picture.

X Each X represents a character position which contains any
allowable character from the computer's character set.

Z Each character Z is a replacement character which repre
sents a digit position. Leading data item zeros are suppressed
and replaced by blanks if corresponding picture string posi
tions are defined by Z. Zero suppression terminates upon
encountering the decimal point (.), or a non zero digit. Each Z
is counted in the size of the item.

1 J a n u a r y 1 9 8 0 7 - 1 7 F D R 3 0 5 6

7 DATA DIVISION

9 Each 9 in a picture-string represents a character position
which contains a numeral and is counted in the size of the
item.

/ Each stroke, or virgule (/), in the picture-string represents a
character position into which the stroke character will be
inserted. (/) is counted in the size of the item.

, The comma character (,) specifies insertion of a comma
between digits. Each insertion character is counted in the size
of the data item, but does not represent a digit position. The
comma may also appear in conjunction with a floating string.
A period character (.) in a picture-string is an editing symbol
representing the decimal point for alignment purposes. The
character also serves to indicate the position for decimal
point insertion.
Numeric character positions to the right of an actual decimal
point in a PICTURE must consist of characters of one type.
The period character (.) is counted in the size of the item.
For a given program, the functions of the period and comma
are exchanged if the clause DECIMAL-POINT IS COMMA is
stated in the SPECIAL-NAMES paragraph. In this exchange,
the rules for the period apply to the comma and the rules for
the comma apply to the period whenever they appear in a
PICTURE clause.
The decimal insertion character (.) must not be the last
character in the picture-string.

+ * These symbols are used as editing sign control symbols and
I represent the character position into which the editing sign

CR I control symbol is placed. The symbols are mutually exclusive
DB ' in any one picture-string, and each character used in the

symbol is counted in determining the size of the data item,
i.e., CR and DB = 2 character positions each; + and - = 1
character position each.
Each * (asterisk) in a picture-string is a replacement charac
ter. Leading data item zeros are suppressed and replaced by
*. Each * is counted in the size of the item.

5. Editing:
• The PICTURE clause provides two basic methods for edit

ing: character insertion and character sup
pression/replacement. The type of editing which may be
performed upon an item is dependent upon the category to
which the item belongs. The table below specifies which
type of editing may be performed upon a given category:

Table 7-2. Categories of Data and Editing.
Category Of Data
Alphabetic
Numeric
Alphanumeric
Alphanumeric Edited
Numeric Edited

Type Of Editing
Simple insertion 'B' only
None
None
Simple insertion 0, B and /
All, subject to rules for Fixed insertion editing

FDR 3056 7-18 1 January 1980

DATA DIVISION 7

r

• Insertion Editing includes the following types: Simple in
sertion, special insertion, fixed insertion, and floating in
sertion.

• Simple insertion editing: utilizes B 0 , / as insertion charac
ters. The insertion characters are counted in the size of the
item and represent the position in the item into which the
character will be inserted.

• Special insertion editing: refers to decimal point insertion
(.) and resulting receiving item alignment. The insertion
character used for the actual decimal point is counted in
the size of the item. The use of the assumed decimal point
- represented by the symbol V, and the use of an actual
decimal point - represented by the insertion character, is
disallowed in the same picture-string; the two are mutually
exclusive. The result of special insertion editing is that the
insertion character is placed in an item in the same position
in which it appears in the picture-string.

• Fixed insertion editing: employs the currency sign and
editing sign control symbols as insertion characters. The
editing sign control symbols are: + - CR DB.

• Only one currency symbol, and only one of the editing sign
control symbols, can be used in a given picture-string.
When the symbols CR or DB are used, they represent two
character positions in determining the size of the item.
They must represent the rightmost character positions to be
counted in the size of the item. The symbol + or -. when
used, must be either the leftmost or rightmost character
position to be counted in the size of the item. The currency
symbol must be the leftmost character position to be
counted in the size of an item, except that it can be
preceded by either a + or - symbol. Fixed insertion editing
results in the insertion character occupying the same char
acter position in the edited item as it occupied in the
picture-string. Editing sign control symbols produce the
following results depending upon the value of the data
item:

Table 7-3. Results of Sign Control Symbols in Editing

EDITING SYMBOL IN
PICTURE-STRING

+

CR
DB

RESULT
DATA ITEM DATA ITEM

POSITIVE OR ZERO NEGATIVE

space
2 spaces CR
2 spaces DB

• Floating insertion editing: utilizes the currency symbol and
editing sign control symbols + or - as floating insertion
characters. These are mutually exclusive in a given picture-
string.

• A floating picture-string is defined as a leading, continuous
series of either $ + or -. or a string composed of one such
character interrupted by one or more insertion commas
and/or decimal point.

1 January 1980 7-19. FDR 3056

7 DATA DIVISION

For example:

$$,$$$,$$$

+ (8) .++
$$,$$$.$$$

Floating insertion editing is indicated in a picture-string by
using a string of at least two of the floating insertion
characters. The leftmost character of the floating insertion
string represents the leftmost limit of the floating symbol in
the data item. The rightmost character of the floating string
represents the rightmost limit of the floating symbols in the
data item.
The second floating character from the left represents the
leftmost limit of the numeric data which can be stored in
the data item. Non-zero numeric data may replace all the
characters at or to the right of this limit.
In a picture-string, there are only two ways of representing
floating insertion editing. One way is to represent any or all
of the leading numeric character positions on the left of the
decimal point by the insertion character. The other way is
to represent all of the numeric character positions in the
picture-string by the insertion character.
If the insertion characters are only to the left of the decimal
point in the picture-string, the result is that a single floating
insertion character will be placed into the character posi
tion immediately preceding the first non-zero digit in the
data item. If all data item digits to the left of the decimal are
zero, the floating insertion character will be placed into the
character position immediately preceding the decimal
point. The character positions preceding the insertion char
acter are replaced with spaces.
If all numeric character positions in the picture-string are
represented by the insertion character, the result depends
upon the value of the data. If the value is zero, the entire
data item will contain spaces.
If the value is not zero, the result is the same as when the
insertion character is only to the left of the decimal point.
To avoid truncation, the minimum size of the picture-string
for the receiving data item must be the number of charac
ters in the sending data item, plus the number of non-
floating insertion characters being edited into the receiving
data item, plus one for the floating insertion character. That
is, a floating string containing n + 1 occurrences of $ or + or
- defines n digit positions.
In the following examples, b represents a blank in the
developed items.

F D R 3 0 5 6 7 - 2 0 1 J a n u a r y 1 9 8 0

DATA DIVISION 7

Examples:
Picture-string Numeric Value Developed Item
$$$999 14 bb$014
— , , 9 9 9 -456 bbbbbb-4'
$$$$$$ 14 bbb$14

• A floating string need not constitute the entire PICTURE of
a numeric edited item, as shown in the preceding ex
amples. However, the characters to the right of a decimal
point and up to the end of a PICTURE, excluding the fixed
insertion characters +. -, CR, DB (if present), are subject to
the following restrictions:
Only one type of digit position character may appear. That
is, Z * 9 and floating-string digit position characters S + -
are mutually exclusive.
If any of the numeric character positions to the right of a
decimal point is represented by + or - or S or Z, then all the
numeric character positionsin the PICTURE must be repre
sented by the same character.
The PICTURE character 9 can never appear to the left of a
floating string, or replacement character. In fact, nothing
can precede a floating string.
When a comma appears to the right of a floating string, the
string character floats through the comma in order to be as
close to the leading digit as possible.

• Suppression/replacement editing includes two types: zero
suppression and replacement with spaces, and zero sup
pression and replacement with asterisks.

• Floating insertion editing and editing by zero sup
pression/replacement are mutually exclusive in a PIC
TURE clause.

• The suppression of leading zeros in numeric character
positions is indicated by the use of the alphabetic character
Z, or the character * (asterisk) as suppresion symbols in a
picture-string. Each suppression symbol is counted in de
termining the size of the item. If Z is used, the replacement
character will be the space. If the asterisk is used, the
replacement character will be *

• Zero suppression and replacement are indicated in a pic
ture-string by one or more of the allowable symbols (Z or
*), representing leading numeric character positions.
These, in turn, are to be replaced when the associated
character position in the data contains a zero. Any simple
insertion character embedded in the string of symbols, or to
the immediate right of this string, is part of the string.

• The two ways of representing zero suppression in a charac
ter-string are:
Represent any or all leading numeric character positions to
the left of the decimal point by suppression symbols: and.
represent all numeric character positions in the picture-
string by suppression symbols.

1 J a n u a r y 1 9 8 0 7 - 2 1 F D R 3 0 5 6

7 DATA DIVISION

If the suppression symbols appear only to the left of the
decimal point, any leading zero in the data which cor
responds to a symbol in the string is replaced by the
replacement character. Suppression terminates either at
the first non-zero digit in the data represented by the
suppression symbol string, or at the decimal point, which
ever is first.
If all numeric character positions in the picture-string are
represented by suppression symbols, and the value of the
data is not zero, the result is the same as if the suppression
characters were only to the left of the decimal point. If the
value is zero, the entire data item will be spaces if the
symbol is Z, or all asterisks (except for the actual decimal
point) if the symbol is *.
A picture-string must consist of at least one of the charac
ters Z A * X 9, or at least two consecutive appearances of
the characters + - $.
The examples below illustrate the use of the PICTURE
clause. In each example, a movement of data is implied, as
indicated by the column headings.

Source Area Receiving Area
PICTURE Data Value PICTURE Edited data

9(5) 12345 $$$,$$9.99 $12,345.00
9(5) 00123 $$$,$$9.99 $123.00
9(5) 00000 $$$,$$9.99 $0.00
9(3)V99 00000 $$$.$$
9(4)V9 12345 $$$,$$9.99 $1,234.50
V9(5) 12345 $$$,$$9.99 $0.12
S9(5) 00123 .99 123.00
S9(5) -00001 .99 -1.00
S9(5) 00123 ++++++.99 +123.00
S9(5) 00001 .99 1.00
S9(5) -12345 +ZZ,ZZZ.99 -12,345.00
S9(5) 12345 -ZZ,ZZZ.99 12,345.00
S9(5) -12345 ZZ,ZZ9.99- 12345.00-
S9C5) 12345 ZZ,ZZ9.99+ 12,345.00+
S9(5) 00000 $ZZ,ZZZ.ZZ
9(5) 00123 ++++f+.99 +123.00
9(5) 00123 .99 123.00
9(5) 00000 $** * **** * * * * * * * * * *
9(5) 00000 $** ***fo,9 $****** ^00
S9(5) 12345 *******.99CR **12345.00
S999V99 02345 ZZZVZZ 2345
S999V99 00004 ZZZVZZ 04
S9(5) -12345 *******.99CR **12345.00CR
S9(5) 12345 $$$$$$.99CR $12345.00

Figure 13-1. Examples of PICTURE Clauses

USAGE

^ F u n c t i o n
The USAGE clause describes the form in which numeric data is represented.

FDR 3056 7-22 1 January 1980

DATA DIVISION 7

Format

DISPLAY
COMPUTATIONAL

IUSAGE IS ; COMP
INDEX
COMPUTATIONAL-3
COMP-3

Syntax rules
1. COMP is a valid abbreviation for COMPUTATIONAL.
2. COMP-3 is a valid abbreviation for COMPUTATIONAL-3.
3. The PICTURE clause cannot be used if USAGE is specified as COM

PUTATIONAL or INDEX.

General rules
1. The USAGE clause can be written at any level. If the USAGE clause is

written at a group level, it applies to each elementary item in the group.
The USAGE clause of an elementary item cannot contradict the USAGE
clause of a group item to which it belongs.

2. A COMPUTATIONAL item can represent a value to be used in computa
tions and must be numeric. When a group item is described as COM
PUTATIONAL, only the elementary items in that group are COMPUTA
TIONAL: the group item itself cannot be used in computations.

3. DISPLAY is the system default if the USAGE clause is not specified.
4. If USAGE is specified as COMPUTATIONAL for an item, and a PIC

TURE clause is included for the same item, the computer will ignore the
USAGE clause.

Note
See Data Representation in section 4 for additional informa
tion.

SIGN

▶ F u n c t i o n
The SIGN clause specifies the position and the mode of representation of the operational
sign when it is necessary to describe these properties explicitly.

Format

[SIGN IS <
LEADING

TRAILING
> [SEPARATE CHARACTER]]

Syntax rules
1. The SIGN clause may be specified only for a numeric data description

entry whose PICTURE contains the character S. or for a group item
containing at least one such numeric data description entry. If an S is not
present in the data item picture-string., the item is considered unsigned
(capable of storing only absolute values), and the SIGN clause
prohibited.

is

1 January 1980 7-23 FDR 3056

7 DATA DIVISION

2. Numeric data description entries to which the SIGN clause applies must
be described by USAGE IS DISPLAY.

3. Only one SIGN clause can apply to any given numeric data description
entry.

General rules
1. When S appears in a picture-string, but no SIGN clause is included in an

item's description, the system default is SIGN IS TRAILING.
2. If the optional SEPARATE CHARACTER phrase is not present, then:

• The operational sign is presumed associated with the lead
ing (or, respectively, trailing) digit position of the elemen
tary numeric data item.

• The character S in picture-string is not counted in de
termining item size.

3. If the SEPARATE CHARACTER phrase is present, then:
• The operational sign will be presumed the leading (or

respectively, trailing) character position of the elementary
numeric data item; this character position is not a digit
position.

• The letter S in a picture-string is counted in determining
the size of the item (in terms of standard data format
characters).

• The operational signs for positive and negative are the
standard data format characters + and -, respectively.

4. Every numeric data description entry whose PICTURE contains the
character S is a signed numeric data description entry. If a SIGN clause
applies to such an entry and conversion is necessary for purposes of
computation or comparisons, conversion takes place automatically.

5. Table 7-4 depicts sign representations for the various SIGN clause
options.

Table 7-4. Sign Representation
SIGN Clause Sign Representation
TRAILING
LEADING
TRAILING SEPARATE
LEADING SEPARATE

Embedded in rightmost byte
Embedded in leftmost byte
Stored in separate rightmost byte
Stored in separate leftmost byte

6. At a group level, an attribute of SEPARATE will cause a group type error
at compile-time. Such attributes must be specified at the elementary
level.

SYNCHRONIZED

^ F u n c t i o n
The SYNCHRONIZED clause specifies the alignment of an elementary item on its natural
addressing boundaries in the computer memory.

FDR 3056 7-24 1 January 1980

DATA DIVISION 7

*

Format

—,

| SYNCHRONIZED j LEFT

| S Y N C \ RIGHT
-»

Syntax rules
1. SYNC is a valid abbreviation for SYNCHRONIZED.
2. In this compiler, the SYNCHRONIZED specification is treated as com

mentary.

JUSTIFIED

▶ F u n c t i o n
The JUSTIFIED clause specifies nonstandard positioning of data within a receiving data
item.

Format

JUSTIFIED
[i r R I G H T]

JUST

▶ Syntax rules
1. This clause can be specified only at the elementary level.
2. JUST is a valid abbreviation of JUSTIFIED.
3. The JUSTIFIED clause cannot be used for data items described as

numeric, or for those for which editing is specified.

▶ General rules
1. When the JUSTIFIED clause option is taken, values are stored in right-to-

left fashion. The clause is effective in connection with a MOVE
statement. In a MOVE operation, if the sending field is shorter then the
receiving field, space filling occurs in the left-most-positions. If the
sending field is longer than the receiving field, the left-most characters
are truncated.

2. When the JUSTIFIED clause is omitted. Standard Alignment Rules apply.

BLANK WHEN ZERO

▶ F u n c t i o n
The BLANK WHEN ZERO clause permits the blanking of an item when its value is zero.

Format

['BLANK WHEN ZERO]

1 January 1980 7-25 FDR 3056

7 DATA DIVISION

▶ Syntax rule
The BLANK WHEN ZERO clause can be used only for an elementary numeric or numeric
edited item.

General rules
1. When used, the BLANK WHEN ZERO clause specifies that the data item

will be set to blanks when the value is all zeros. Leading zeros are not
supressed by this clause.

2. If the clause is specified for a numeric item, the category of the item is
interpreted as numeric edited.

VALUE DESCRIPTION OF
OUT-COST

RESULT

0012.34 9999.99 BLANK WHEN ZERO 0012.34
0123.45 $9999.99 BLANK WHEN ZERO $0123.45
01.2345 $9999.99 BLANK WHEN ZERO $0001.230000.04 $$$$$.99 BLANK WHEN ZERO $.040000.00 $$$$$.99 BLANK WHEN ZERO)&%%%&&&$0000.00 $$$$$.99 $.000012.34 **** QQ BLANK WHEN ZERO **12.340012.34 * * * * 9 9 **12.340000.00 ****^99 BLANK WHEN ZERO **** * *
0000.00 * * * * Q Q ****.oo0000.00 ZZZZVZZ BLANK WHEN ZERO V¥¥¥¥$0000.04 ZZZZVZZ BLANK WHEN ZERO
0000.00
0000.04

ZZZZ.ZZ BLANK WHEN ZERO]6£6ZZZZ.ZZ BLANK WHEN ZERO .040000.00
0000.00

ZZZZ.99
ZZZZ.99

BLANK WHEN ZERO
nn

Figure 13-2. Examples: BLANK WHEN ZERO

FDR 3056 7-26 1 January 1980

DATA DIVISION 7

VALUE

▶ F u n c t i o n
The VALUE clause defines the value of constants, the initial values of WORKING-
STORAGE items, and the values associated with a condition-name.

Format one

[VALUE IS literal]

Format two

literal-1 [literal-2 ...]

[VALUE IS }
literal-1

THROUGH
literal-2

Syntax rules
1. The words THROUGH and THRU are equivalent.
2. The VALUE clause is not permitted in a data description entry specifying

an OCCURS or REDEFINES clause.
3. Numeric literals in a VALUE clause must have a value which is within

range of values indicated by the PICTURE clause, and must not have a
value which would require truncation of nonzero digits. Non-numeric
literals in a VALUE clause must not exceed the size indicated by the
PICTURE clause.

4. The type of literal written in a VALUE clause depends on the type of data
item, as specified in the data item formats earlier in this text. For edited
items, values must be specified as non-numeric literals. A type conflict,
producing a compile time error, will arise if a figurative constant or
literal is not compatible with the PICTURE. For example. PICTURE X
VALUE ZERO will produce a type conflict error, since ZERO is a
numeric figurative constant, but PICTURE X specifies an alphanumeric
item.

5. In a data item with a VALUE clause, the size of the data item cannot
exceed 32,767 characters.

6. A VALUE clause may not occur in the FILE SECTION of the Data
Division except in level 88 condition-name entries.

General rules
1. The positioning of the literal within a data area is the same as would

result from specifying a MOVE of the literal to a data area.
2. The VALUE clause may be specified at the group level in the form of a

correctly sized, non-numeric literal, or figurative constant.
3. When an initial value is not specified, no assumption should be made

regarding the initial contents of an item in Working-Storage.
4. A figurative constant may be specified in both Format one and Format

two instead of a literal.
5. Format one is required to define an initial value for a data item or a

constant.

1 January 1980 7-27 FDR 3056

7 DATA DIVISION

6. Format two is reqired for condition-name entries. The VALUE clause
and the level-number 88 condition-name itself are the only two items
permitted in the entry. The characteristics of a condition-name are
implicitly those of its conditional variable. Wherever the TRHU phrase is
used, literal-1 must be less than literal-2, literal-3 less than literal-4, etc.

7. Rules governing the VALUE clause differ in the respective sections of the
Data Division:

• In the File and Linkage Sections, the clause can be used
only in condition-name entries.

• In the Working-Storage Section, the clause must be used in
condition-name entries; it can also be used to specify the
initial value of any other data item, with the result that the
item assumes the specified value at the start of the object
program.

8. Level 88 condition-name entries specify a value, list of values, or a range
of values which an elementary item may assume.

• A level 88 entry must be preceded either by another level
88 entry (in the case of several consecutive condition-
names pertaining to an elementary item) or by an elemen
tary item.

• Every condition-name pertains to an elementary item in
such a way that the condition-name may be qualified by the
name of the elementary item and the elementary item's
qualifiers.

• A condition-name is used in the Procedure Division in
place of a simple relational condition.

• A condition-name may pertain to an elementary item (a
conditional variable) requiring subscripts, ln such a case,
the conditional-name, when written in the Procedure
Division, must be subscripted according to the same re
quirements as the associated elementary item.

• 88 Level specifications can contain individual values, series
of individual values, a range of values, or a series of ranges
of values, but not a combination of ranges and individual
values. (See also LEVEL-NUMBER.)

WORKING-STORAGE SECTION

Function
The WORKING-STORAGE SECTION of the Data Division describes noncontiguous data
(level 77). and records which are not part of external files, but are developed and processed
internally. This section also contains data assigned fixed or constant values.

Format

VWORKING-STORAGE SECTI

77-level-description-entry
record-description-entry

ON.

FDR 3056 7-28 1 January 1980

DATA DIVISION 7

Syntax rules
1. The Working-Storage Section is optional. If included, it must begin with

the words 1 WORKING-STORAGE SECTION, followed by a period and a
space.

2. Noncontiguous item names and record names in the Working-Storage
Section must be unique: they cannot be qualified. Subordinate data-
names need not be unique if they can be made unique by qualifications.

3. The level-number 77 is applied to noncontiguous elementary data items,
each defined in a separate data description entry which must contain the
level-number 77. a data-name, and a PICTURE clause or USAGE IS
INDEX clause, with other optional data description clauses as necessary.

4. Data items in the Working-Storage Section with a definite hierarchic
relationship to one another must be grouped into records according to the
rules for formation of record descriptions. Any clause used in a record
description in the File Section can be used in a record description in the
Working-Storage Section (see RECORD DESCRIPTION).

General rules
1. Working-Storage items described in this section include the following:

• In the File and Linkage Sections, the clause can be used
only in condition-name entries.

• In the Working-Storage Section, the clause must be used in
condition-name entries; it can also be used to specify the
initial value of any other data item, with the result that the
item assumes the specified value at the start of the object
program.

2. Level 88 condition-name entries specify a value, list of values, or a range
of values which an elementary item may assume.

• A level 88 entry must be preceded either by another level
88 entry (in the case of several consecutive condition-
names pertaining to an elementary item) or by an elemen
tary item.

• Every condition-name pertains to an elementary item in
such a way that the condition-name may be qualified by the
name of the elementary item and the elementary item's
qualifiers.

• A condition-name is used in the Procedure Division in
place of a simple relational condition.

• A condition-name may pertain to an elementary item (a
conditional variable) requiring subscripts. In such a case,
the conditional-name, when written in the Procedure
Division, must be subscripted according to the same re
quirements as the associated elementary item.

• 88 Level specifications can contain individual values, series
of individual values, a range of values, or a series of ranges
of values, but not a combination of ranges and individual
values. (See also LEVEL-NUMBER.)

1 / a n u a r y l 9 8 0 7 - 2 9 F D R 3 0 5 6

7 DATA DIVISION

LINKAGE SECTION

▶ F u n c t i o n
The Linkage Section describes data previously defined in a calling program which is
available to a called program.

Format

LINKAGE SECTION.

77-level-description-entry
record-description-entry

Syntax rules
1. The Linkage Section is optional. If included, it must begin with the words

LINKAGE SECTION followed by a period and a space.
2. Each Linkage Section record-name and noncontiguous item name must

be unique within the called program; it cannot be qualified.
3. Level-number 77 refers to noncontiguous elementary data items, with no

hierarchic relationship to one another, and therefore not grouped into
records. Each level-number 77 data item is defined in a separate data
description entry which must include the level-number 77, a data-name,
and a PICTURE clauses may be included as necessary.

4. Data items in the Linkage Section, which have a definite hierarchic
relationship to one another, must be grouped into records according to
the rules for formation of Record Description.

5. The VALUE clause must not be specified in the Linkage Section except
in level 88 condition-name entries.

General rules
1. The Linkage Section of the Data Division is meaningful if and only if the

called program is to function under the control of a CALL statement, and
the CALL statement in the calling program contains a USING phrase.

2. The Linkage Section is used to describe data which is available through
the calling program, but is to be referred to in both the calling program
and the called program. No space is allocated in the program for data
items referenced by data-names in the Linkage Section of that program.
Procedure Division references to these data items are resolved at load
time by equating the reference in the called program to the location used
in the calling program.

3. Data items defined in the Linkage Section of the called program may be
referenced within the Procedure Division of the called program only if
they are specified as operands of the USING phrase of the Procedure
Division header, or are subordinate to such operands, and the called
program is under the control of a CALL statement which specifies a
USING phrase.

1 January 1980 7-30 FDR 3056

DATA DIVISION 7

r

Note
A Linkage Section example is presented in Section 9, INTER
PROGRAM COMMUNICATION.

Example

DATA DIVISION.
FILE SECTION.
FD PRINT-FILE, LABEL RECORDS ARE OMITTED

DATA RECORDS ARE PRINT-LINE, PRINT-LINE1.
01 PRINT-LINE PICTURE IS X(100).
01 PRINT-LINE1.

05 USER-CARRIAGE-CONTROL PICTURE IS X.
05 PRINT-LINE-DETAIL PICTURE IS X(99).

FD CARD-FILE , LABEL RECORDS ARE STANDARD
DATA RECORDS ARE CARD-IMAGE , CARD-RECORD ,
RECORD CONTAINS 30 CHARACTERS ,
VALUE OF FILE-ID IS 'DATAIN'.

01 CARD-IMAGE PICTURE IS X(80).
01 CARD-RECORD.

05 PHONE-IN PICTURE IS X(3).
05 DATA-IN PICTURE IS X(64).
05 STATE-IN PICTURE IS XX.
05 D-O-B-IN PICTURE IS X(6).

FD DIRECTORY-FILE, LABEL RECORDS ARE STANDARD,
DATA RECORDS ARE DIRECTORY-RECORD-OUTPUT,

DISPLAY-RECORD, DIRECTORY-RECORD-INPUT,
RECORD CONTAINS 100 CHARACTERS,
VALUE OF FILE-ID IS 'INDXFILE1.

01 DIRECTORY-RECORD-OUTPUT.
05 PHONE-NUMBER PICTURE IS X(B) .
05 NAME.

10 LAST-NAME PICTURE IS X(14).
10 FILLER PICTURE IS X.
10 FIRST-NAME PICTURE IS X(13).
10 FILLER PICTURE IS XXX.

05 ADDRESS PICTURE IS X(25).
05 FILLER PICTURE IS X.
05 CITY PICTURE IS X(4).
05 FILLER PICTURE IS X(3).
05 STATE PICTURE IS XX.
05 BIRTH-DATE PICTURE IS 9(6).
05 FILLER PICTURE IS X(20) .

01 DISPLAY-RECORD.
05 DISPLAY-DIR PICTURE IS X(72).
0 5 F I L L E R P I C T U R E I S X (2 8) .

01 DIRECTORY-RECORD-INPUT.
05 PHONE-IN PICTURE IS X(3).
05 DATA-IN PICTURE IS X(64).
05 STATE-IN PICTURE IS XX.
05 D-O-B-IN PICTURE IS X(6).
05 FILLER PICTURE IS X(20).

F D R 3 0 5 6 7 - 3 1 1 J a n u a r y 1 9 8 0

7 DATA DIVISION

WORKING-STORAGE SECTION.
77 AT-END-SWITCH PICTURE IS 9

GO-TO-READ
GO-TO-NAME
CREATE-UPDATE
FILE-STATUS

77
77
77
77
77
01

01

01

PICTURE IS 9
IS 9

VALUE IS ZERO.
VALUE IS ZERO.
VALUE IS ZERO.
VALUE IS SPACE.
VALUE IS SPACE.
VALUE IS SPACE.

PICTURE
PICTURE IS X
PICTURE IS XX

ACCEPT-TRANSACTION-TYPE PIC X
PERFORM-COUNT1.
05 PERFORM-COUNT PICTURE IS 999.
05 PER-CO REDEFINES PERFORM-COUNT

PICTURE IS X, OCCURS 3 TIMES.
WS-RECORD.

PICTURE IS X(14).
PICTURE IS X.
PICTURE IS X(13).
PICTURE IS XXX.
PICTURE IS

05 WS-LAST-NAME
05 FILLER
05 WS-FIRST-NAME
05 FILLER
05 WS-ADDRESS
05 FILLER
05 WS-CITY
05 FILLER
05 WS-PHONE-NUMBER
05 WS-STATE
05 WS-BIRTH-DATE
HEADER.
05 CARRIAGE-CTRL PICTURE IS XX VALUE IS SPACE.
05 HEADER-0 PICTURE IS X(3) VALUE IS 'PHONE'.
05 FILLER PICTURE IS X
05 HEADER-1 PICTURE IS X(4)
05 FILLER PICTURE IS X(27)
05 HEADER-2 PICTURE IS X(6)
05 FILLER PICTURE IS X(20)
05 HEADER-3 PICTURE IS X(4)
05 FILLER PICTURE IS X

X(25)
PICTURE IS X.
PICTURE IS X(4).
PICTURE IS XXX.
PICTURE IS X(3).
PICTURE IS XX.
PICTURE IS XCS) .

VALUE IS SPACE.
VALUE IS 'NAME'.
VALUE IS SPACE.
VALUE IS 'STREET'
VALUE IS SPACE.
VALUE IS 'CITY'.
VALUE IS SPACE.

1 January 1980 7-32 FDR 3056

Procedure division

PROCEDURE DIVISION

Function
The procedure division contains instructions specifying the data processing steps to be
performed by the program. COBOL instructions are written as sentences which are
combined to form paragraphs under paragraph names. These, in turn, are combined to form
sections under section names.
Within COBOL sentences, verbs (commands) are employed to denote actions. Statements
and sentences denote procedures.

Format

PROCEDURE DIVISION [USING data-name-1 [, data-name-2]...].

[DECLARATIVES.

| section-name SECTION. USE sentence,

[paragraph-name, [sentence]...]...(...

END DECLARATIVES.]

section-name SECTION.

[paragraph-name, [sentence]...]...[...

Syntax rules
1. The first entry in the Procedure Division must be the words PRO

CEDURE DIVISION.
2. The USING clause is specified only if:

• The program being written is a CALLable subprogram
which is to function under the control of a CALL statement.

• The CALL statement in the calling program contains a
USING clause.

3. Each of the data-name operands in the USING clause must be defined as
a data item in the Linkage Section of the subprogram.

4. Within the subprogram, Linkage Section data items are processed ac
cording to their data descriptions as given in the subprogram.

5. Data-name level-numbers in the USING clause must be 01 or 77. See
Section 9, INTER-PROGRAM COMMUNICATION for complete dis
cussion.

1 January 1980 3-1 FDR 3056

8 PROCEDURE DIVISION

6. Declarative sections are optional. When included, they must be grouped
at the beginning of the Procedure Division, preceded by the key word
DECLARATIVES and followed by the key words END DECLARATIVES.
These entries must appear on separate lines.

7. A SECTION entry is optional. When included, it must consist of section-
name, followed by the word SECTION and a period. Each section header
must appear on a line by itself; each section-name must be unique.

8. A paragraph is a logical entry consisting of one or more sentences. A
paragraph-name must precede the first sentence.

9. A sentence is a single statement or a series of statements terminated by
a period and followed by a space.

10. A statement consists of a COBOL verb followed by appropriate operands
(data-names or literals) and other words necessary for the completion of
the statement. There are two types of statements, the Imperative and
Conditional:

• Imperative Statements: An imperative statement specifies
an unconditional action to be taken by the object program.
An imperative statement consists of a verb and its oper
ands, excluding the IF conditional statement, the READ
statement and any I/O statement which has an INVLAID
KEY clause.

• Conditional Statements: A conditional statement stipulates
a condition which is tested to determine whether an alter
nate path of program flow is to be taken. The IF statement
provides this capability. READ statements, and any I/O
statement having an INVALID KEY clause are also con
sidered to be conditional. When an arithmetic statement
possesses a SIZE ERROR suffix, the statement is con
sidered to be conditional rather than imperative.

11. Arithmetic statements may be imperative or conditional. The five
arithmetic verbs are: ADD, SUBTRACT, MULTIPLY, DIVIDE, COM
PUTE.

General rules
1. The sections under the DECLARATIVES header provide a method for

including procedures which are invoked when a condition occurs which
cannot normally be tested by the programmer. Each Declaratives Section
comprises a section header, a USE compiler-directing sentence, and,
optionally, one or more paragraphs.
Although the system automatically handles checking and creation of
standard labels, and executed error recovery in the case of input/ output
errors, additional procedures may be specified, here, by the COBOL
programmer.
Since such procedures are executed only at the time an error in reading
and writing occurs, they cannot appear in the regular sequence of
procedural statements. Instead, they must appear in the DECLAR
ATIVES section. Related procedures are preceded by a USE sentence.
Within a USE procedure, there must be no reference to non-declarative
procedures. Conversely, in the non-declarative portion, there must be no
reference to procedure-names which appear in the declarative portion,
except that PERFORM statements may refer to the procedures associated
with a USE statement. For additional information, see USE statement.

F D R 3 0 5 6 8 - 2 1 J a n u a r y 1 9 8 0

- -

PROCEDURE DIVISION 8

r

2. After END DECLARATIVES is specified, no text can appear before the
next section header.

3. The Procedure Division is usually, though not necessarily, written in
sections, each with a section header followed optionally by one or more
successive paragraphs.

4. Section-name and paragraph-name follow the general rules for WORD
FORMATION.

5. Arithmetic statements in the Procedure Division are governed by the
following rules:

0 All data-names used in arithmetic statements must be
elementary numeric data items which are defined in the
Data Division of the program, except when they are the
operands of GIVING. The data item may be numeric
edited. Index-names and index items are not permissible in
these arithmetic statements.

• Decimal point alignment is supplied automatically through
out the computations.

• Intermediate result fields generated for the evaluation of
arithmetic expressions assure the accuracy of the result
field, except where high-order truncation is necessary.

• The maximum size of each operand is 18 decimal digits.
The composite of operands, which is a hypothetical data
item resulting from the superimposition of specified oper
ands in a statement aligned on their decimal points, must
not contain more than 18 decimal digits.

•• When arithmetic is attempted with one or more non-
numeric operands, the program will execute, but results
are invalid.

6. The three statement components which may appear in all arithmetic
statements are: The GIVING option, the ROUNDED option, the SIZE
ERROR option.

• If the GIVING option is written, the value of the data-name
which follows the word GIVING is made equal to the
calculated result of the arithmetic operation. The data-
name which follows GIVING is not used in the computation
and may be a numeric edited item.

• When the ROUNDED option is specified, if the most
significant digit of the excess is greater than or equal to 5,
the least significant digit of the resultant data-name has its
value increased by 1. If the ROUNDED option is not taken,
truncation will occur after decimal-point alignment if the
result is greater than the size of the receiving data item.

• Rounding of a computed negative result is performed by
rounding the absolute value of the computed result and
then making the final result negative.

• The following chart illustrates the relationship between a
calculated result and the value stored in an item which is to
receive the calculated result, with and without rounding.

1 J a n u a r y 1 9 8 0 8 - 3 F D R 3 0 5 6

8 PROCEDURE DIVISION

Calculated
Result

-12.36
8.432

35.6
65.6

.0055

Item to Receive Calculated Result
Value After

P i c t u r e R o u n d i n g
S 9 9 V 9 - 1 2 . 4

9 V 9 8 . 4
9 9 V 9 3 5 . 6

S 9 9 V 6 6
S V 9 9 9 . 0 0 6

Value After
Truncating
-12.3

8.4
35.6
65

.005

The SIZE ERROR option is written immediately after any
arithmetic statement, as an extension of the statement. The
format of the SIZE ERROR option is:

[ON SIZE ERROR Imperative-statement...]

If, after decimal-point alignment and any low-order trunca
tion, the value of a calculated result exceeds the largest
value which the receiving field is capable of holding, a size
error condition exists.
If the SIZE ERROR option is present, and a size error
condition arises, the value of the resultant data-name is
unaltered and the series of imperative statements specified
for the condition is executed.
If the SIZE ERROR option has not been specified and a size
error condition arises, no assumption should be made
about the final result.
An arithmetic statement, if written with a SIZE ERROR
option, is not an imperative statement. Rather, it is a
conditional statement since it is data-dependent and is
prohibited in contexts where only imperative statements
are allowed.
An example of a conditional arithmetic statement is:

ADD 1 TO RECORD-COUNT, ON SIZE ERROR MOVE ZERO TO
RECORD-COUNT, DISPLAY "LIMIT 99 EXCEEDED".

Note that if a size error occcurs (in this case, it is apparent
that RECORD-COUNT has Picture 99, and cannot hold a
value of 100), both the MOVE and DISPLAY statements are
executed. Otherwise, the MOVE and DISPLAY statements
are not executed.

PROCEDURE STATEMENTS
COBOL statements (verbs) are described on the following pages in alphabetic sequence. For
a brief reference, see the Prime COBOL Verb Index, Table C-l, in Appendix C.

ACCEPT

^ F u n c t i o n
The ACCEPT statement causes low-volume data to be made available to the specified data
item.

FDR 3056 8-4 1 January 1980

PROCEDURE DIVISION 8

-

Format one

ACCEPT data-name [FROM mnemonic-name]
Format two

Syntax rule
The mnemonic-name in Format one must be specified also in the SPECIAL-NAMES paragraph
of the Environment Division, and must be associated with the console (terminal).

▶ Genera l ru les
1. The ACCEPT statement causes transfer of data. The transferred data

replaces the contents of the field specified by data-name.
2. The transferred data is a line of up to 140 characters.
3. Omission of FROM mnemonic-name implies that input is from the terminal.
4. When FROM mnemonic-name is specified, input is keyed in at the terminal

by the operator; mnemonic-name must be assigned to CONSOLE in the
SPECIAL-NAMES paragraph.
When input is to be accepted from the terminal, execution consists of the
following steps:

• Processing is suspended.
• When the operator enters a response, the program stores the acquired

data in the field designated by data-name, and normal execution
proceeds.

• The data size is controlled by the size specified for data-name.
• For unequal size of data-name and terminal input, the result is treated

as an alphanumeric-to-alphanumeric move with space fill on the right
or right truncation.

5. The Format two ACCEPT statement causes the requested information to be
transferred to data-name according to the rules of the MOVE statement.
DATE, DAY, and TIME are conceptual data items and therefore should not
be described in the Data Division of the COBOL program.

6. DATE has the following data elements: year, month, and day of the month, in
that sequence, from high to low order (left to right) Thus July 1, 1974 is
expressed as 740701. DATE, when accessed by a COBOL program, is treated
as through described in the COBOL program as an unsigned elementary
numeric integer data item with a length of six digits.

7. DAY has the following data elements: year and day of year, in that sequence,
from high to low order (left to right). Thus July 1, 1974 would be expressed
as 74183. DAY, when accessed by a COBOL program, is treated as though
described in a COBOL program as an unsigned elementary numeric integer
data item with a length of five digits.

118

r
1 September 1981 5-5 FDR3056

8 PROCEDURE DIVISION

8. TIME has the following data elements: hours, minutes, seconds, and
hundredths of a second. TIME is based on time elapsed after midnight on a
24-hour basis. Thus 2:41 p.m. is expressed as 14410000. TIME, when
accessed by a COBOL program, is treated as though described in a COBOL
program as an unsigned elementary numeric integer data item with a length
of eight digits. The minimum value of TIME is 00000000; the maximum
value is 23595999.

A D D

W ~ F u n c t i o n
The ADD statement adds together two or more numeric values and stores the resulting sum.

Format one

(data-name-1 \ ", data-name-2"
ADD ... TO data-name-3 [ROUNDED]

[literal-1 j _, literal-2
.[; ON SIZE ERROR imperative-statement]

Format two

ADD

GIVING

f data-name-1) (, data-name-2 \

l i t e r a l - 1 j I , l i t e r a l - 2 j
data-name-4 [ROUNDED] [; ON SIZE EF

r, data-name-3 ~|

_, literal-3
ROR imperative- statement]

Format three

ADD
CORRESPONDING

CORR
identitier-1 TO indentifier-2

[ROUNDED] [; ON SIZE ERROR imperative-statement]

Syntax rules
1. In Formats one and two, each data-name must refer to an elementary

numeric item, except that in Format two each item following GIVING can be
either an elementary numeric item or an elementary numeric edited item.

2. Each literal must be a numeric literal.
3. The maximum size of each operand is 18 digits. If all operands, excluding

those following the word GIVING, were to be superimposed upon each
other, aligned by their implied decimal points, their composite should not
exceed 18 decimal digits in length.

4. In Format three, identifier-1 and identifier-2 must be group names.
Elementary items under identifier-1 are added to and stored into the like-
named elementary items under identifier-2.

FDR3056 8-6 1 September 1981

PROCEDURE DIVISION

-

General rules
1. In Format one, the values of the operands preceding the word TO are added,

the sum is added to the current value of data-name-3, and the result is stored
in data-name-3.

2. In Format two, the values of the operands preceding the word GIVING are
added, and the sum is stored as the new value of data-name-4 following
GIVING.

3. In Format three, data items in identifier-1 are added to and stored in like-
named data items in identifier-2.

4. See the rules for arithmetic statements under PROCEDURE DIVISION,
General Rules. The ROUNDED and ON SIZE ERROR options may be used
when truncation of the results could occur.

5. The rules for signs are those presented in FUNDAMENTAL CONCEPTS OF
COBOL, Algebraic Signs.

r

!.-■-"" Examples
ADD INTEREST, DEPOSIT TO BALANCE ROUNDED.
ADD REGULAR-TIME, OVERTIME GIVING GROSS-PAY.

The first statement would result in the total sum of INTEREST, DEPOSIT, and BALANCE
being placed in BALANCE with rounding, whiie the second would result in the sum of
REGULAR-TIME and OVERTIME being placed in item GROSS-PAY.

A LT E R

^ F u n c t i o n
The ALTER statement modifies a simple GO TO statement elsewhere in the Procedure
Division, thus changing the sequence of execution of program statements.

Format

ALTER paragraph-name-1 TO [PROCEED TO] paragraph-name-2

^ S y n t a x r u l e s
1. Paragraph-name-l should contain only a GO TO sentence with the DEPEN

DING phrase.
2. Paragraph-name-2 is the name of another paragraph or section in the

Procedure Division.

W' General rule
Execution of the ALTER statement modifies the GO TO statement in paragraph-name-1
so that subsequent executions of the modified GO TO statement cause transfer of
control to paragraph-name-2.

Example
GATE.

GO TO M-F-OPEN.
M-F-OPEN.

OPEN INPUT MASTER-FILE.
ALTER GATE TO PROCEED TO NOPMAL.

1 September 1981 8-7 FDR3056

8 PROCEDURE DIVISION

The above code demonstrates a technique for providing for a one-time initializing program step.

Note
ALTER is fully supported in PRIME COBOL. The reader should be aware,
however, that the ALTER statement makes debugging difficult.

CALL

| ^ F u n c t i o n
The CALL statement allows one program to communicate with one or more other programs. It
causes control to be transferred from one program to another within a runfile, with both
programs having access to data items referred to in the CALL statement.

18

Format

CALL literal-1 [USING data-name-1 [, data-name-2]. ■•]

^ - Syntax ru les
1. The literal-1 must be a non-numeric literal that is defined as the PROGRAM-ID of a

separately compiled program.
2. The data-names must be defined as level-01 or level-77, and must not be subscripted.

Note
The relationship of literal-1 and PROGRAM-ID is illustrated in the
example at the end of Section 9.
When subroutines are called, literal-1 is the subroutine name (for
example, 'SUBSRT') and data-names in the USING list are the arguments
passed and returned. For available subroutines and calling sequences,
refer to the PRIMOS Subroutines Reference Guide.

^ Genera l ru le
Data-names in the USING list are made available to the called subprogram by passing
addresses to the subprogram. These addresses are assigned to the LINKAGE SECTION items
declared in the USING list of that, subprogram. Correspondence between caller and called lists
is positional. Therefore, the number of data-names specified in matching CALL and Procedure
Division USING lists must be identical. Up to 126 data-names are permitted.

Note
For additional information, see the CALL statement in Section 9, INTER
PROGRAM COMMUNICATION.

CLOSE

^ F u n c t i o n
The CLOSE statement terminates the processing of files.

FDR3056 8-8 1 September 1981

PROCEDURE DIVISION

-

Format one

CLOSE file-name-1 [, file-name-2]...

▶ Syntax rule
The files referenced in the CLOSE statement need not all have the same access or
organization.

iv> General rule
A CLOSE statement must be executed upon completion of file processing, or before a STOP RUN
is executed.

COMPUTE

▶ F u n c t i o n
The COMPUTE statement evaluates an arithmetic expression, a numeric-literal, or a data-
name, and then stores the result in a designated numeric or numeric edited item.

Format

data-name-2
COMPUTE data-name-1 [ROUNDED] = <(numeric-literal

arithmetic-expression

[; ON SIZE ERROR imperative-statement]

▶ Syntax rule
In general, data-name appearing to the left of - must refer to either an elementary numeric
item or an elementary numeric edited item.

^ General ru le
The COMPUTE statement is governed by the regulations imposed by the statement
components GIVING, ROUNDED, SIZE ERROR, as outlined in the General Rules, PROCEDURE
DIVISION. It is also governed by the general regulations for Arithmetic Statements as described
in FUNDAMENTAL CONCEPTS OF COBOL.

COPY

▶ F u n c t i o n
The COPY statement provides a means of including pre-written COBOL source coding in the
programs at compile time; this is a compiler-directing function.

July 1982 8 - 9 FDR 3056

8 PROCEDURE DIVISION

Format

COPY text-name [
OF

IN
library-name]

Syntax rules
1. OF and IN are interchangeable and mutually exclusive.
2. A COPY statement may occur anywhere in the source program, in any

Division where a character-string or a separator might usually occur,
except that it may not occur within another COPY statement.

General rules
1. Text-name must be a unique name on the UFD (User's File Directory) which

contains the COBOL program if the library-name is not specified.
2. If the text-name is not on the same UFD as the program, library-name must be

specified and must be the UFD name which contains the text-name.
Examples:

FILE-CONTROL. COPY text-name.
FD MASTER-FILE COPY text-name OF SUB. „
01 MASTER-RECORD. COPY text-name IN SUB.
SECTION-NAME SECTION. COPY text-name.
PARAGRAPH-NAME. COPY text-name IN SUB.

Of the examples above, the first and fourth ones have copy members contained
on the same UFD as the source program. The rest of them have copy members
contained in a UFD named SUB.

3. The data preceding the COPY statement must not be contained within the
copy member.

4. The library-name may not be a sub-UFD.

▶ E x a m p l e
The following is from Data Division coding in a source program.

01 MASTER-DESCRIPTION. COPY MASDES.

The text-name MASDES exists in the same UFD as the source program. It must not contain
the 01 MASTER-DESCRIPTION entry; it might have the format:

FDR 3056 8-10 1 July 1982

PROCEDURE DIVISION

05 BADGE-NO PIC 9(5) .
05 NAME.

10 LAST-NAME PIC X(15) .
10 FIRST-NAME PIC X (15).

After compilation, examination of the listing file would reveal:

01 MASTER-DESCRIPHON. (COPY MASDES.) (where the copy member is
05 BADGE-NO PIC 9 (5) . comment only) .
05 NAME.

10 LAST-NAME PIC X(15) .
10 FIRST-NAME PIC X (15).

Line numbering of the COPY file in the listing file is independent of the line numbers of the
source.
Using the example above, the corresponding listing file might look like:

(0059)
(0060)
(0061)
(0062) 01 MASTER-DESCRIPTION. COPY .MASDES.
[0001] 05 BADGE-NO PIC 9(5) .
[0002] 05 NAME.
[0003] 10 LAST-NAME PIC X (15).

_ [0 0 0 4] 1 0 F I R S T - N A M E P I C X (1 5) .
(0062) 01 MASTER-DESCRIPTION. COPY MASDES.
(0063) 01 EMPLOYMENT-HISTORY.
(0064)
(0065)
(0066)

DELETE

r ^ " F u n c t i o nThe DELETE statement logically removes a record from an indexed or relative file.

Format

DELETE file-name RECORD [; INVALID KEY Imperative-statement]

▶ Syntax rule
The INVALID KEY option must not be specified for a DELETE statement referencing a file
in SEQUENTIAL access mode. This was not allowed in the ANSI standard X3.23-1974.

▶ General rules
1. A DELETE statement logically removes a data record from a file. When

operating on an indexed file, the DELETE statement removes all cor
responding indices as well.

2. Execution of a DELETE statement does not affect the contents of a record
area associated with file-name.

3. In SEQUENTIAL access, the record to be deleted must have been
successfully read before a DELETE can be executed.

1 J a n u a r y 1 9 8 0 8 - 1 1 F D R 3 0 5 6

8 PROCEDURE DIVISION

4. In indexed files with RANDOM or DYNAMIC access modes, the value of
the record to be deleted must be placed in the RECORD KEY field.

5. In relative files with RANDOM or DYNAMIC access modes, the value of
the record to be deleted must be placed in the RELATIVE KEY field.

6. For additional discussion, see Sections 12 and 13.

DISPLAY

▶ F u n c t i o n
The DISPLAY statement causes low-volume data to be output to the appropriate hardware
device.

Format

\ data-name
DISPLAY < literal

I figurative-constant
• • ■ [UPON mnemonic-name]

^ Syntax rules
1. The mnemonic-name must be specified in the SPECIAL-NAMES para

graph in the Environment Division.
2. The maximum total number of characters which may be output is 72.

General rules
1. When the UPON suffix is omitted, the system default is the standard

display device, the on-line terminal.
2. If a figurative-constant is given as an operand, it will be displayed as a

single character.
3. If a data item operand is packed, it is displayed as a series of digits

followed by a separate trailing sign.

▶ E x a m p l e s

Type S t a t e m e n t O u t p u t

data-name D I S P L A Y B A D G E - N O 5 2 2 0 7

data-name DISPLAY 'BADGE-NO = * BADGE-NO BADGE-NO == 52207

literal D I S P L A Y ' E N D - J O B 1 E N D - J O B

figurative-constant DISPLAY 'SELECT' ZERO SELECT0

DIVIDE

^ F u n c t i o n
The DIVIDE statement divides one numeric data item into another and stores the quotient.

FDR 3056 8-12 1 January 1980

PROCEDURE DIVISION 8

Format one

"

r

r

DIVIDE
\ data-name-1

/ literal-1
INTO data-name-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

Format two

DIVIDE
data-name-1

llteral-1

data-name

literal-2
GIVING data-name-3 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

Syntax rules
1. Each data-name must refer to an elementary numeric item, except that a

data-name associated with the GIVING phrase can refer either to an
elementary numeric item or to an elementary numeric edited item.

2. Each literal must be a numeric literal.
3. The maximum size of each operand is 18 decimal digits. If all receiving

data items were to be superimposed upon each other, aligned by their
decimal points, their composite should not exceed 18 decimal digits in
length.

4. Division by zero always causes a size-error condition.

General rules
1. In Format one, data-name-1 or literal-1 is divided into data-name-2; the

quotient then replaces the dividend, data-name-2.
2. In Format 2, division occurs as in the cases below, and the quotient is

stored in the data items following the word GIVING.
e If the keyword INTO is used, the value of data-name-1 or

literal-1 is divided into data-name-2 or literal-2 and the
result is stored in data-name-3.

• If the keyword BY is used, data-name-1 or literal-1 is
divided by data-name-2 or literal-2 and the result is stored
in data-name-3.

3. The REMAINDER clause of the DIVIDE statement is not supported. The
user may substitute by a simple modification:
For the statement:

DIVIDE data-name-1 by data-name-2 GIVING data-name-3
REMAINDER data-name-4.

Substitute:

DIVIDE data-name-1 by data-name-2 GIVING data-name-3.
COMPUTE data-name-4 = data-name-1 - (data-name-2 *
data-name-3).

1 January 1980 8-13 FDR 3056

8 PROCEDURE DIVISION

ENTER

▶ F u n c t i o n
The ENTER statement is classified as a compiler-directing statement; it acts as a modifer to
a subsequent CALL statement and permits the use of more than one language in the same
program.

Format

ENTER
COBOL

ASSEMBLER

▶ Syntax rules
1. A CALLed subprogram may be written in COBOL, FORTRAN, or

Assembly, language, etc.. The parameter ASSEMBLER in the ENTER
statement signifies a subprogram is other than COBOL.

2. The form ENTER COBOL may be used following a CALL statement; this
traditional usage is optional. After any CALL statement, ENTER COBOL
is assumed.

3. Each CALL upon an assembly Language subroutine must be preceded by
its own ENTER ASSEMBLER statement.

4. The ENTER statement is optional in PRIME compiler.

^ General ru le
The other language statements are executed in the called program as if they had been
compiled in the called program following the ENTER statement. See INTER-PROGRAM
COMMUNICATION for additional information.

EXHIBIT

^ F u n c t i o n
The EXHIBIT statement provides a means for displaying critical data at specified points in
a procedure.

Format

EXHIBIT
literal

NAMED data-name

General rules
1. The EXHIBIT statement is injected at critical points in the Procedure

Division to provide debugging information. Specified data is EXHIBITED
on the terminal.

2. The EXHIBIT statement differs from DISPLAY in that both the data-
name and its value, connected by an '=' character, are printed. The '='
character is preceded and followed by a space.

Example:
Statement

EXHIBIT NAMED EMPLOYEE-NO
Output

EMPLOYEE-NO = 950

FDR 3056 8-14 1 January 1980

PROCEDURE DIVISION 8

*
EXIT

W" Function
The EXIT statement provides an end-point for a procedure.

Format

EXIT.

r

W" Syntax rules
1. The EXIT statement must appear in a sentence by itself.
2. For documentation purpose, the EXIT sentence may be the only sentence

in the paragraph.

▶ General rule
An EXIT statement serves only to enable the use to assign a procedure-name to a given point
in a program. Such an EXIT statement has no other effect on the compilation or execution
of the program.

EXIT PROGRAM

W~ Function
The EXIT PROGRAM statement marks the logical end of a called program.

Format

EXIT PROGRAM.

r

^ Syntax rules
1. The EXIT PROGRAM statement must appear in a sentence by itself.
2. For documentation purpose, the EXIT PROGRAM sentence may be the

only sentence in the paragraph. However, Prime COBOL does not
require it.

▶ General rules
1. The execution of an EXIT PROGRAM statement in a called program

causes control to be passed to the calling program. Execution of an EXIT
PROGRAM statement in a program which is not called behaves as if the
statement were an EXIT statement.

2. If a main program contains an EXIT PROGRAM statement, CSIN will not
ask for file assignments and will take the default VALUE OF FILE-ID
value as defined in the FD.

GOTO

Function
The GO TO statement transfers control from one part of the PROCEDURE DIVISION to
another, overriding the normal sequential execution of sentences.

Format one
GO TO procedure-name.

1 January 1980 8-15 FDR 3056

8 PROCEDURE DIVISION

Format two

GO TO procedure-name-1 [procedure-name-2]...

DEPENDING ON data-name.

W" Syntax rules
1. A paragraph referenced by an ALTER statement can consist only of a

paragraph header followed by a Format one GO TO statement.
2. In Format two, data-name must be an elementary, numeric integer.

▶ General rules
1. A GO TO statement must not branch out of a range of the PERFORM

statements.
2. A procedure-name must follow the GO TO statement. Otherwise, the

compiler will abort with internal code.
3. When a Format one GO TO statement is executed, control is transferred

to procedure-name, or to another paragraph-name if the GO TO
statement has been modified by an ALTER statement.

4. When a GO TO statement represented by Format two is executed, control
is transferred to procedure-name-1, procedure-name-2, etc., depending
on the value of the identifier being 1, 2,.... n. If the value of the identifier
is anything other than the positive or unsigned integers 1, 2 n, then no
transfer occurs and control passes to the next statement in the normal
sequence for execution.

IF

W~ Function
The IF statement causes the evaluation of a condition (see Section 4, Conditional Ex
pressions), permitting the execution of specified procedural statements if the condition is
true.

Format

NEXT SENTENCE I \ statement(s)-2
F c o n d i t i o n { \ r E L S E < f]

statement(s)-1 \ / NEXT SENTENCE

^ Syntax rule
The conditions in the IF statement must conform to the rules and outlining of conditions
specified in Conditional Expressions, Section 4.

▶ General rules
1. If the condition is true, any ELSE phrase is bypassed and either

statement-1 or NEXT SENTENCE (whichever was specified in the
statement) is executed as follows:

• Statement-1, if specified, is executed. Control then passes
to the next executable sentence following the IF statement,
unless statement-1 contains a procedure-branch or condi
tional statement, in which case control is transferred ac
cording to the rules for that statement.

FDR 3056 8-16 1 January 1980

PROCEDURE DIVISION 8

*

'

• If the NEXT SENTENCE phrase is specified, control passes
to the next executable sentence.

2. If the condition is false, any statement-1 or its replacement NEXT
SENTENCE which may be specified is bypassed, and control passes as
follows:

• Statement-2, if specified, is executed. Control then passes
to the next executable sentence, unless statement-2 con
tains a procedure-branch or conditional statement, in
which case control is transferred according to the rules for
that statement.

• If no ELSE statement-2 phrase is specified, or if the ELSE
NEXT SENTENCE phrase is specified, control passes to the
next executable sentence.

3. The IF statement is said to be nested whenever statement-1 and/or
statement-2 contains another IF statement. If statements within IF
statements are considered as paired IF and ELSE combinations, proceed
ing from left to right. Thus, any ELSE encountered applies to the
immediately preceding IF which has not been already paired with an
ELSE. It is not required that the number of ELSE's in a sentence be the
same as the number of IF s.

4. The relation condition has the format:
R e l a t i o n M e a n i n g
= i s e q u a l t o
< i s l e s s t h a n
> i s g r e a t e r t h a n
NOT = is not equal to
NOT < is not less than
N O T > i s n o t g r e a t e r

than
5. The class condition determining whether an operand is numeric or

alphabetic. Its format is:

',
IF data-name IS [NOT]

ALPHABETIC

The NUMERIC test is valid only for a group, decimal, or character item.
The ALPHABETIC test is valid only for a group or character item.

6. The condition-name condition tests the value or status of a conditional
variable. Its format is:

[F [NOT] condition-name
The condition-name is defined as a level 88 data item in the record
description entry in the Data Division.
In a condition-name condition, the first series of statements is executed
if, and only if, the designated condition is true. The second series of
statements is executed if, and only if, the designated condition is false.
The second series (ELSE part) is terminated by a sentence-ending period.
If there is no ELSE part to an IF statement, then the first series of
statements must be terminated by a sentence-ending period.
Whether the condition is true or false, the next sentence is executed after

1 J a n u a r y 1 9 8 0 8 - 1 7 F D R 3 0 5 6

8 PROCEDURE DIVISION

execution of the appropriate series of statements. If a GO TO is
contained in the imperatives which are executed, or the normal flow of
program steps is superseded because of an active PERFORM statement,
the next sentence is not executed.
Example:

IF BALANCE = 0 GO TO NOT-FOUND.

IF X = 1.74 MOVE 'Mf TO FLAG.

IF ACCOUNT-FIELD = SPACES OR NAME = SPACES ADD 1 TO
SKIP-COUNT ELSE GO TO BYPASS.

7. The sign condition tests an arithmetic expression to determine whether
its value is greater than, less than, or equal to zero. The format is:

f NEGATIVE (
I F d a t a - n a m e I S [N O T] < Z E R O > ^

/ POSITIVE \

8. Two or more conditions can be combined by the logical operators AND
and OR.The format for a combined condition is:

AND
IF condition ii \ condition

OR

9. Comparisons employing the IF statement can be made involving indexed
data items.

10. A nested IF exists when, in a single sentence, more than one IF precedes
the first ELSE.
Example:

IF X = Y IF A = B

MOVE "*" TO SWITCH
ELSE MOVE "A" TO SWITCH
ELSE MOVE SPACE TO SWITCH

The flow of the above sentence may be represented by the tree structure
in Figure 8-1.

Another useful way of viewing nested IF structure is based on numbering
IF and ELSE verbs to show their priority.

IF(1) X = Y
IF(2) A = B

MOVE "*" TO SWITCH
MOVE "A" TO SWITCH
MOVE SPACE TO SWITCH

t r u e t r u e - a c t i o n (2)
action (1): ELSE(2) false-action(2)

ELSE(l) false-action(l)
The above illustration shows clearly the fact that IF(2) is wholly nested
within the true-action side of IF(1).

11. It is not required that the number of ELSEs in a sentence be the same as
the number of IFs; there may be fewer ELSE branches.

F D R 3 0 5 6 8 - 1 8 1 J a n u a r y 1 9 8 0

PROCEDURE DIVISION 8

F '

X = Y?\

<Ta = Bj£>S PA C E S W I T C H

NEXT
J f '

SENTfcNCfc

Figure 8-

N E X T ^
SENTENCE

1. Nested IF Tree Structure

*~NEXT
SENTENCE

Examples:
IF M = 1 IF K = 0

GO TO M1K0 ELSE GO TO MN0T1.

IF AMOUNT IS NUMERIC IF AMOUNT
IS ZERO GO TO CLOSE-OUT.

In the latter case, IF(2) could equally well have been written as AND.

"

INSPECT

▶ F u n c t i o n
The INSPECT statement enables the programmer to examine a character-string item, to
tally, replace, or tally and replace occurrences of single-characters in a data item.

Format

I ALL

INSPECT data-name-1 TALLYING data-name-2 I Rj) LEADING
operand-2

'CHARACTERS

BEFORE

AFTER
INITIAL operand-3]

ALL
LEADING V operand-4

REPLACING / I FIRST BY operand-5

BEFORE

AFTER

CHARACTERS

INITIAL operand-7]

1 January 1980 8-19 FDR 3056

PROCEDURE DIVISION

^ Syntax rules
1. Data-name-1 must be a group item or an elementary item described

(implicitly or explicitly) as USAGE IS DISPLAY.
2. Data-name-2 must be an elementary numeric data item.
3. Operands may either be data items or literals. If they are data items,

operands must reference elementary alphabetic, alphanumeric or numeric
items described (implicitly or explicitly) as USAGE IS DISPLAY. If they
are literals, each operand must be a nonnumeric literal and may be any
figurative constant, except ALL.

▶ General rules
1. When both TALLYING and REPLACING clauses are present, the two

clauses behave as if two INSPECT statements were written. The first
contains only a TALLYING clause, the second contains only a REPLAC
ING clause.

2. The INSPECT statement enables examination of a character-string item, /^
permitting various combinations of the following actions:

• Counting appearances of a specified character
• Replacing a specified character by an alternative
• Qualifying and limiting the above actions by keying those

actions to the appearance of other specific characters
3. The TALLYING clause causes character-by-character comparison, from

left to right, of data-name-1.
• the user may initialize data-name-2 prior to the operation, '^*v

but this is not required.
• When AFTER INITIAL operand-3 sub-clause is present, the

counting process begins only after detection of a character
in data-name-1 matching operand-3. If BEFORE INITIAL
operand-3 is specified, the counting process terminates
upon encountering a character in data-name-1 which
matches operand-3. The count is accumulated in data-
name-2.

• If the ALL phrase is specified, the content of data-name-2 is ""*'"■
incremented by one for each occurrence of operand-2
matched within the content of data-name-1.

• If the LEADING phrase is specified, the content of data-
name-2 is incremented by one for each contiguous occur
rence of operand-2 matched within the content of data-
name-1, provided that the leftmost such occurrence is at the
point where the comparison began and wherin operand-2
was eligible to participate.

• If the CHARACTERS phrase is specified, the content of
data-name-2 is incremented by one for each character in
data-name-1.

4. The REPLACING clause causes replacement of characters under speci
fied conditions.

• If BEFORE INITIAL operand-7 is present, replacement
does not continue after detection of a character in data-
name-1 matching operand-7. I f AFTER INITIAL operand-7 ^
is present, replacement does not commence until detection
of a character in data-name-1 matching operand-7.

F D R 3 0 5 6 8 - 2 0 1 J a n u a r y 1 9 8 0

PROCEDURE DIVISION

If the ALL phrase is specified, each occurrence of oper-
and-4 matched within the content of data-name-1 is re
placed by operand-5.
If the LEADING phrase is specified, each contiguous occur
rence of operand-4 matched within the content of data-
name-1 is replaced by operand-5, provided that the leftmost
occurrence is at the point where the comparison began and
wherein operand-4 was eligible to participate.
If the FIRST phrase is specified, the leftmost occurrence of
operand-4 matched within the content of data-name-1 is
replaced by operand-5.
When the CHARACTERS phrase is specified, each charac
ter in data-name-1 is replaced by operand-5.

INSPECT name TALLYING countr FOR ALL 'L'.

name Before countr After name After

LILLY
SMALL

LILLY
SMALL

INSPECT name TALLYING countr FOR LEADING 'B'
AFTER INITIAL 'A'
REPLACING CHARACTERS BY 'X'.

name Before countr Affter name After

ABACK
CABBAGE

XXXXX
xxxxxxx

INSPECT name REPLACING CHARACTERS BY '$ '
BEFORE INITIAL '.'.

name Before countr After name After

A B D . 9 9 $ $ $ $. 9 9

INSPECT name TALLYING countr FOR CHARACTERS
AFTER INITIAL 'E'
REPLACING ALL 'B' BY 'A'.

name Before countr After name After

DEBATE
IBEX

DEAATE
IAEX

INSPECT name REPLACING FIRST 'A1 BY 'P'
AFTER INITIAL 'M*.

name Before countr After name After
L L A M A A L L A M P A
L L O Y D L L O Y D

1 January 1980 8-21 FDR 3056

8 PROCEDURE DIVISION

MOVE

▶ F u n c t i o n
The MOVE statement transfers data from one area of main storage to another, performing
conversion and editing as indicated.

Format one

data-name-1
■ <{ J> TO data-name-2 [, data-name-3]...

literal

Format two

MOVE
CORRESPONDING

CORR
identifier-1 TO identlfier-2

▶ Syntax rule
Data-name-1, identifier-1, and literal represent the sending area; data-name-2, identifier-2,
and data-name-3 represent the receiving area.

▶ General rules
1. When a group item is a receiving field, characters are moved without

conversion and without editing.
2. During elementary moves, data is converted as necessary, editing occurs,

and alignment is performed according to Standard Alignment Rules,
LANGUAGE SPECIFICATIONS.

3. For numeric (external or internal decimal, binary, numeric literal) to
numeric or numeric edited:

• The items are aligned by decimal points, with generation of
zeros or truncation on either end, as required.

9 When the types of the source field and receiving field
differ, conversion to the type of the receiving field takes
place.

• The items may have special editing performed on them
with suppression of zeros, insertion of dollar signs, etc., and
decimal point alignment, as specified by the receiving area.
(This rule is only for numeric edited.)

4. For non-numeric source and targets:
• The characters are placed in the receiving area from left to

right (unless JUSTIFIED RIGHT applies).
• If the receiving field is not completely filled by data being

moved, the remaining positions are filled with spaces.
• If the source field is longer than the receiving field, the

move is terminated as soon as the receiving field is filled.
5. When overlapping fields are invoked, results are not predictable.
6. When MOVE ALL literal is used, the literal must be a single character.

The receiving field is filled with the specified character.
7. When the CORRESPONDING option is used, identifier-1 and identifier-2

must be group items. Elementary items under identifier-1 are moved to
the corresponding items under identifier-2.

FDR 3056 8-22 1 January 1980

PROCEDURE DIVISION 8

If no correspondence is found, the compiler will return a warning
message.

Note
Table C-6 in Appendix C summarizes the various types of
moves permitted with the MOVE statement.

MULTIPLY

Function
The MULTIPLY statement computes the product of two numeric data items.

Format

r

r

MULTIPLY
data-name-1

numeric-literal-1

BY
data-name-2 [GIVING data-name-3]

numeric-literal-2 GIVING data-name-3

[ROUNDED] [ON SIZE ERROR imperative-statement]

Syntax rules
1. Each data-name must refer to an elementary numeric item, except that

data-name-3 may be an elementary numeric edited item.
2. Each literal must be a numeric literal.
3. The maximum size of each operand is 18 decimal digits. The composite of

operands, excluding those following GIVING, must not contain more
than 18 decimal digits.

General rules
1. If the GIVING option is omitted, the second operand must be a data-

name; the product will replace the second operand data-name.
2. Example:

If the field BALANCE is to be multiplied by 1.03, it must be written as:

MULTIPLY 1.03 BY BALANCE.
Where the result will be stored in the data item named BALANCE.

3. When the GIVING option is taken, the product is stored in data-name-3.
4. The rules for signs are those presented in FUNDAMENTAL CONCEPTS

OF COBOL, Algebriac Signs.

OPEN

r ▶ F u n c t i o n
The OPEN statement initiates the processing of files, and enables other input/output
operations, such as label checking and writing.

1 January 1980 8-23 FDR 3056

PROCEDURE DIVISION

Format one

INPUT j
OPEN)) EO \ l»e-name-1 [. fHe-name-2]...

OUTPUT I
EXTEND)

Format two

OPEN
INPUT

OUTPUT
file-name-1 [, flle-name-2]...

▶ Syntax rules
1. There must be an OPEN statement for each file prior to a READ, WRITE,

or REWRITE statement.
2. The files referred to in the OPEN statement need not all have the same

organization or access.
3. The EXTEND phrase can be used only for sequential files.

▶ General rules
1. Format one is used for Sequential I/O.
2. Format 2 is used for Indexed I/O and Relative I/O.
3. A file opened as INPUT can only be accessed in a READ statement.
4. A file opened as OUTPUT can only be accessed in a WRITE statement.
5. A file opened as l-O can be accessed by a READ, REWRITE (disk only)

or WRITE statement.
6. When the EXTEND phrase is specified, the OPEN statement opens the

file, then positions to the bottom of that file (immediately following the
last logical record). Subsequent WRITE statements to the file will add
records as though the file had been opened with the OUTPUT phrase.

7. No statement which references a given file can be executed, either
explicitly or implicitly, until an OPEN statement is successfully executed
for that file.

8. An OPEN statement must be successfully executed prior to the execution
of any of the permissible input-output statements. (For permissible
statements, see Table C-5 in Appendix C.)

9. If the OPEN statement does not produce access to the file (i.e., it cannot
locate the desired file), the program will terminate abnormally at
execution time.

Note
See Sections 12 and 13 for additional information on Indexed
I/O and Relative I/O, respectively.

PERFORM

▶ F u n c t i o n
The PERFORM statement is used to transfer control explicitly to one or more procedures,
and to return control implicitly to the normal sequence after transfer execution.

FDR 3056 8-24 1 January 1980

PROCEDURE DIVISION 8

Format one

PERFORM procedure-name-1 [

integer
[< } T I M E S]

data-name-1

THROUGH

THRU
procedure-name-2]

Format two

1THROUGH
PERFORM procedure-name-1 [<J } procedure-name-2]

) THRU

data-name-1 data-name-2
f { I n d e x - n a m e - 2

index-name-1 literal-1

data-name-3

literal-2
] UNTIL condltion-1

Format three

PERFORM procedure-name-1 [
THROUGH

THRU
procedure-name-2]

I da ta -name-1 j \ da ta -name-2

\ FROM) Index-name-2
index -name-1 (J l l t e ra l -1

data-name-3
\ UN TIL conditlon-1

literal-2

d a t a - n a m e - 4 | \ d a t a - n a m e - 5
[{ > F R O M I l n d e x - n a m e - 4

i n d e x - n a m e - 3 \ / l l t e r a l - 3

data-name-6
} UNTIL conditlon-2

literal-4

d a t a - n a m e - 7 I \ d a t a - n a m e - 8
[> F R O M 1 l n d e x - n a m e - 8

i n d e x - n a m e - 7 \ / l i t e r a l - 5

data-name-9
}■ UNTIL condltion-3]]

llteral-6

1 January 1980 8-25 FDR 3056

8 PROCEDURE DIVISION

▶ Syntax rules
1. The words THROUGH and THRU are equivalent.
2. Each data-name represents an elementary numeric item described in the

Data Division.
3. Each literal represents a numeric literal.
4. If an index-name is specified in the VARYING or AFTER phrase, then:

• The data-name in the associated FROM and BY phrases
must be an integer data item.

• The literal in the- associated FROM phrase must be a
positive integer.

• The literal in the associated BY phrase must be a non-zero.
5. If an index-name is specified in the FROM phrase, then:

• The data-name in the associated VARYING or AFTER
p h r a s e m u s t b e a n i n t e g e r d a t a i t e m . _

• The data-name in the associated BY phrase must be an
integer data item.

• The literal in the associated BY phrase must be an integer.
Note

Integer is a numeric literal or a numeric data item that does
not include any character positions to the right of the as
sumed decimal point.

6 . L i t e r a l i n t h e B Y p h r a s e m u s t n o t b e z e r o . ^
7. Condition-1, condition-2, condition-3 may be any conditional expression

as described in FUNDAMENTAL CONCEPTS OF COBOL, Simple Con
ditional Expressions.

W* General rules
1. If the PERFORM statement is written with no options, control is trans

ferred to the first statement of procedure-name-1. At the completion of
procedure-name-1, control is implicitly returned to the next executable
s t a t e m e n t f o l l o w i n g t h e P E R F O R M s t a t e m e n t . i t m

2. If procedure-name-2 is specified and it is a paragraph-name, then the
control is returned to the next sequential instruction after the last
statement of that paragraph.

3. If procedure-name-2 is specified and it is a section-name, then the
control is returned to the next sequential instruction after the last
statement of the last paragraph of that section.

4. In Format one:
• If the THROUGH option is taken, multiple paragraphs or

sections can be executed before control is returned to the
next sequential statement.

• If the TIMES option is taken, procedures are performed the
number of times specified by data-name-1 or integer. At the
completion of procedure-name-2, control is returned to the
statement following PERFORM statement.

• Data-name-1 or integer must be a positive numeric integer
w h i c h c a n n o t b e g r e a t e r t h a n 3 2 , 7 6 7 . / ^ s

• If data-name-1 or integer is initially zero or negative, the
PERFORM statement is not executed; control passes to the
statement following PERFORM statement.

F D R 3 0 5 6 8 - 2 6 1 J a n u a r y 1 9 8 0

PROCEDURE DIVISION 8

5. In Format two:
e If the UNTIL option is taken, successive execution of

procedures occurs until a condition is satisfied.
• The statement is coded as:

PERFORM procedure-name-1 [THRU procedure-name-2]

UNTIL condltlon-1.

• Condition-1 must be a simple condition, excluding an ELSE
phrase. The condition is tested prior to execution of the
PERFORM statement. If the condition is not met. PER
FORM is executed until the condition is satisfied. If the
condition is satisfied prior to execution of the PERFORM
statements, PERFORM is not executed and control passes
to the next sequential instruction.

• If all options are used to vary the values referred to by
data-name-1 or index-name-1:

• The condition is tested prior to execution of the PERFORM
statement. If the condition is true. PERFORM is not ex
ecuted; control passes to the next sequential instruction.

• If the condition is false, data-name-1 is set to the current
value of data-name-2 or literal-1 at the point of initial
execution of the PERFORM statement. If the condition is

_ s t i l l fa lse, procedure-name-1 THRU procedure-name-2 are
executed once.

• The value of data-name-1 is incremented or decremented
by the value in data-name-3 or literal-2. The condition is
reevaluated. The cycle continues until the condition is
satisfied, at which point control is transferred to the next
executable statement following PERFORM statement. See
Figure 8-3.

• At the termination of PERFORM statement, data-name-1 or

r index-name-1 has a va lue which exceeds the last usedsetting by the value of data-name-3 or literal-2. If the
condition was true before initial execution of PERFORM
statement, data-name-1 or index-name-1 contains the cur
rent value of data-name-2 or index-name-2.

6. In Format three:
• The rules related to varying one identifier are shown in

Rule 5 above.
• When two identifiers are varied, data-name-1 and data-

name-4 are set to the current value of data-name-2 and
data-name-5, respectively. After the identifiers have been
set, condition-1 is evaluated; if true, control is transferred
to the next executable statements; if false, condition-2 is
evaluated. If condition-2 is false, procedure-name-1
through procedure-name-2 is executed once, then data-
name-4 is augmented by data-name-6 or literal-4 and condi-

r t i o n - 2 i s e v a l u a t e d a g a i n . T h i s c y c l e o f e v a l u a t i o n a n daugmentation continues until this condition is true. When
condition-2 is true, data-name-4 is set to the value of
literal-3 or the current value of data-name-5, data-name-1 is
augmented by data-name-3 and condition-1 is reevaluated.

1 J a n u a r y 1 9 8 0 8 - 2 7 F D R 3 0 5 6

8 PROCEDURE DIVISION

The PERFORM statement is completed if condition-1 is
true; if not, the cycles continue until condition-1 is true.
During the execution of the procedures associated with the
PERFORM statement, any change to the VARYING vari
able (data-name-1 and index-name-1), the BY variable
(data-name-3), the AFTER variable (data-name-4 and in
dex-name-3), or the FROM variable (data-name-2 and in
dex-name-2) will be taken into consideration and will
affect the operation of the PERFORM statement.
At the termination of the PERFORM statement, data-
name-4 contains the current value of data-name-5. Data-
name-1 has a value that exceeds the last used setting by an
increment or decrement value, unless condition-1 was true
when the PERFORM statement was entered, in which case
data-name-1 contains the current value of data-name-2.
When two identifiers are varied, data-name-4 goes through
a complete cycle (FROM, BY, UNTIL) each time data-
name-1 is varied. See Figure 8-4.
When three identifiers are varied, the mechanism is the
same as for two identifiers except that data-name-7 goes
through a complete cycle each time that data-name-4 is
augmented by data-name-6 or literal-4, which in turn goes
through a complete cycle each time data-name-1 is varied.
See Figure 8-5.
After the completion of PERFORM statement, each data
item varied by an AFTER phrase contains the current value
of the data-name in the associated FROM phrase. Data-
name-1 has a value that exceeds its last used setting by one
increment or decrement value, unless condition-1 is true
when the PERFORM statement is entered, in which case
data-name-1 contains the current value of data-name-2.
An example for a Format three PERFORM statement is
shown below:

START-PARA.
PERFORM INT-PARA

VARYING INDXl FROM 1 BY 1
UNTIL INDXl > 2

AFTER INDX2 FROM 1 BY 1
UNTIL INDX2 > 12

AFTER INDX3 FROM 1 BY 1
UNTIL INDX3 > 7.

GO TO SORT-PARA.

INT-PARA.
MOVE ZEROS TO DEPT-TOTAL(INDXl, INDX2, INDX3)

F D R 3 0 5 6 8 - 2 8 1 J a n u a r y 1 9 8 0

PROCEDURE DIVISION 8

r 7. The only necessary relationship between procedure-name-1 and pro
cedure-name-2 is that the sequence of operations is executed, beginning
at the procedure-name-1 and ending with procedure-name-2, so that
control can be implicitly transferred to the next executable statement
following the PERFORM statement.
GO TO, PERFORM and CALL statements may occur between procedure-
name-1 and the end of procedure-name-2. If there are two or more logical
paths to the common return point, then, for documentation purposes.
procedure-name-2 may be the name of a paragraph consisting of an EXIT
statement, to which all of these paths may lead. For example:

PERFORM-1
PERFORM INT-PARA THRU EXIT-PARA.
ADD TOTAL-1, TOTAL-2, TOTAL-3 GIVING DEPT-TOTAL.

INT-PARA.
IF INDXl =2 GO TO PATH-1.
IF INDX2 =12 GO TO PATH-2,
IF INDX3 =7 GO TO PATH-3.

PATH-1.

GO TO EXIT-PARA,
PATH-2.

GO TO EXIT-PARA.
PATH-3.

EXIT-PARA.
EXIT.

8. If a sequence of statements referred to by a PERFORM statement
includes another PERFORM statement, the sequence of procedures
associated with the included PERFORM must itself either be totally
included in, or totally excluded from, the logical sequence referred to by
the first PERFORM. Thus, an active PERFORM statement, whose execu
tion point begins within the range of another active PERFORM
statement, must not allow control to pass to the exit of the other active
PERFORM statement; furthermore, two or more such active PERFORM
statements may not have a common exit. See Figure 8-2.

1 J a n u a r y 1 9 8 0 8 - 2 9 F D R 3 0 5 6

8 PROCEDURE DIVISION

x PERFORM aTHRU m

d PERFORM f THRU j
f

x PERFORM aTHRU m

f

d PERFORM fTHRU

Figure 8-2 Permissible PERFORM Sequences

x PERFORMaTHRU m

d PERFORM fTHRU

h

ENTRANCE

SET DATA-NAME-1
EQUAL TO

CURRENT FROM VALUE

^ T E S T ^ v .>v CONDITION-1 ^S*

FALSE
"

EXECUTE
PROCEDURE-NAME-1

THROUGH
PROCEDURE-NAME-2

' '

AUGMENT
DATA-NAME-1 WITH

CURRENT BY VALUE

TRUE
< E X I T)

Figure 8-3. Logic of PERFORM Statement (one identifier varied)

FDR 3056 8-30 1 January 1980

PROCEDURE DIVISION 8

~

~

ENTRANCE

SET
DATA-NAME-1 AND
DATA-NAME-4 TO

CURRENT FROM VALUES

EXECUTE
PROCEDURE-NAME-1

THROUGH
PROCEDURE-NAME-2

I

SET
DATA-NAME-4

TO ITS CURRENT
FROM VALUE

I
AUGMENT

DATA-NAME-4
WITH ITS CURRENT

BY VALUE

AUGMENT
DATA-NAME-1

WITH ITS CURRENT
BY VALUE

TO
Figure 8-4. Logic of PERFORM Statement (two identifiers varied)

1 January 1980 8-31 FDR 3056

PROCEDURE DIVISION

ENTRANCE

SET
DATA-NAME-1
DATA-NAME-4
DATA-NAME-7

TO CURRENT FROM VALUES

EXECUTE
PROCEDURE-NAME-1

THROUGH
PROCEDURE-NAME-2

SET
DATA-NAME-7

TO ITS CURRENT
FROM VALUE

AUGMENT
DATA-NAME-7

WITH ITS CURRENT
BY VALUE

AUGMENT
DATA-NAME-4

WITH ITS CURRENT
BY VALUE

T
©

SET
DATA-NAME-4

TO ITS CURRENT
FROM VALUE

AUGMENT
DATA-NAME-1

WITH ITS CURRENT
BY VALUE

Figure 8-5. Logic of PERFORM Statement (three identifiers varied)
READ

^ F u n c t i o n
The READ statement makes available a record from a file.

W* Format one
REAP file-name [NEXT] RECORD [INTO data-name-1]

[AT END Imperative statement]

FDR 3056 8-32 1 January 1980

PROCEDURE DIVISION

Format two

REAP file-name RECORD [INTO data-name-1] [KEY IS data-name-2]

[INVALID KEY Imperative-statement]

Syntax rules
1. Format one is used for all sequentially read files.
2. The NEXT phrase option in Format one is used only for Indexed and

Relative I/O files, in SEQUENTIAL or DYNAMIC access modes, when
records are to be retrieved sequentially.

3. Format two is used only for Indexed I/O and Relative I/O files.
4. The KEY IS option of Format two is used only for Indexed I/O files.

General rules
1. A file must be OPEN in the INPUT or I/O mode when a READ statement

for that file is executed.
2. The READ statement makes a record available to the program before

execution of any subsequent statement, provided AT END or INVALID
KEY are not invoked.

3. Format one, without the NEXT option, is used for Sequential I/O files.
The INTO option permits the user to specify that a copy of the data
record is to be placed into a data area immediately after the READ
statement. The data-name must not be defined in the file itself.
If end-of-file occurs, but there is no AT END clause in the READ
statement, an applicable Declaratives procedure is performed. If neither
AT END nor Declaratives exists, an execution I/O error occurs.

4. Format one, without the NEXT option, is used for sequential reads of
Indexed I/O files in SEQUENTIAL access mode. The read is based on
the primary index (RECORD KEY).

5. Format one, without the NEXT option, is used for sequential reads of
Relative I/O files in SEQUENTIAL access mode. The read is based on
the RELATIVE KEY.

6. Indexed and Relative I/O files in DYNAMIC mode, may be read
sequentially, rather than randomly, by use of the NEXT option.

7. For General Rules 4, 5, and 6 above, if the INTO clause is used, the data
record is automatically moved into data-name-1. When AT END is
specified, control is passed to the imperative-statement after the com
plete file has been read.

8. For Indexed I/O files in DYNAMIC and RANDOM mode, if NEXT is not
specified, and the file is to be read sequentially, the value of the record
to be retrieved must be placed in the RECORD KEY data-name.

9. For Relative I/O files, if NEXT is not specified, and the file is to be read
sequentially, the value of the record to be retrieved must be placed in the
RELATIVE KEY data-name.

10. For Indexed I/O files read sequentially, if one of the secondary index
sequences is to be used, the index must first be established with a Format
two statement. Thereafter, a Format one statement may be used.

11. For Sequential I/O disk files containing packed or binary data, the user
should specify UNCOMPRESSED in the FD entry for that file.

1 January 1980 8-33 FDR 3056

PROCEDURE DIVISION

12. Further detailed discussion of READ statement formats as they apply to
Indexed I/O files and Relative I/O files will be found in Sections 12 and
13, respectively.

READY TRACE

^ F u n c t i o n
The READY TRACE statement turns on a Prime tracing function to assist in determining the
point at which actual flow departs from expected flow.

Format

READY TRACE.

▶ Syntax rule
The execution of the trace mode may be set or reset dynamically.

^- General rule
After a READY TRACE statement is executed, each time a paragraph or section in the
Procedure Division is entered, that paragraph or section name is output to the terminal to
provide debugging information. The format printed is:

ENTER: section-name/paragraph-name

RELEASE

▶ F u n c t i o n
The RELEASE statement transfers records to the initial phase of a SORT operation.

Format

RELEASE record- name [FROM Identifier]

▶ Syntax rule
A RELEASE statement may only be used within an input procedure associated with a SORT
statement for a file whose SD entry contains the record-name.

Note
For complete discussion, see Section 11, SORT MODULE.

RESET TRACE

Function
This statement turns off the Prime tracing function.

Format
RESET TRACE.

▶ General rule
The RESET TRACE statement can only occur after the execution of a READY TRACE
statement.

F D R 3 0 5 6 8 - 3 4 J J a n u a r y 1 9 8 0

PROCEDURE DIVISION 8

RETURN

W* Funct ion
The RETURN statement obtains sorted records from the final phase of a SORT operation.

Format

RETURN file-name RECORD [INTO Identifier]

AT END imperative-statement

^ Syntax rule
A RETURN statement may be used only within an output procedure associated with a SORT
statement for file-name described by an SD entry.

Note
For complete information, see Section 11. SORT MODULE.

REWRITE

▶ F u n c t i o n
The REWRITE statement logically replaces a record existing in a disk file.

Format

REWRITE record-name [FROM data-name]

[INVALID KEY imperative-statement]

Syntax rules
1. Record-name and data-name must not refer to the same storage area.
2. Record-name is the name of a logical record in the File Section and may

be qualified.

General rules
1. The file containing record-name must be a disk file and must be open for

I/O (in all access methods) prior to execution of a REWRITE statement.
2. If the FROM option is used, the information in data-name is moved to the

record area prior to the REWRITE. For Indexed I/O files, the primary
RECORD KEY must equal the key from the previous READ, or the
INVALID KEY conditions will occur.

3. A record must have been READ successfully prior to a REWRITE
statement. This is required to lock the record to ensure that it cannot be
updated by another program running concurrently.

4. The INVALID KEY option is not used for Sequential I/O files. The file
status field, if specified, is updated by the REWRITE statement.

5. For Indexed I/O files, control is passed to the INVALID KEY statement
if the primary key is changed. If this option is not written, control passes
to the USE DECLARATIVES. One or the other of these options must be
taken for indexed files. Refer to Appendix C for status codes.

6. The REWRITE statement must not change or rewrite the primary
RECORD KEY in Indexed I/O files.

1 January 1980 8-35 FDR 3056

PROCEDURE DIVISION

7. For Relative I/O files, control is passed to the INVALID KEY statement
if the RELATIVE KEY is changed after a successful READ. If the
INVALID KEY option is not taken, control passes to the USE DECLAR
ATIVES. One or the other of these options must be taken.

8. A sequential file using REWRITE must be a COBOL-created file other
than a printer file, or any uncompressed file.

Note
See Sections 12 and 13 for additional information on Indexed
I/O and Relative I/O, respectively.

SEARCH

W" Funct ion
The SEARCH statement is used to search a table for a table element which satisfies the
specified condition, and to adjust the associated index-name to indicate that table element.

Format one

Identifier-2
SEARCH ldent lfier-1 [VARYING <J } j

index-name-1

[; AT END imperative-statement-1]

imperatlve-statement-2
; WHEN conditlon-1

NEXT SENTENCE

imperative-statement-3
[; W H E N c o n d l t i o n - 2 < J J »]

NEXT SENTENCE

Format two

SEARCH ALL identlfler-1 [; AT END imperative-statement-1]

EQUALS I \ ldentifier-3
data-name-1 < IS EQUAL TO

N < f / I S =

condition-name-1

(EQUALS
data-name-2 < IS EQUAL TO

[A N D ; I S =

condition-name-2

imperative-statement-2

NEXT SENTENCE

literal-1

identifler-4

llteral-2

FDR 3056 8-36 1 January 1980

PROCEDURE DIVISION 8

Syntax rules
1. In both Formats one and two, identifier-1 must not be subscripted or

indexed, but its description must contain an OCCURS clause and an
INDEXED BY clause.

2. Identifier-2, when specified, must be described as USAGE IS INDEX, or
as a numeric elementary item without any positions to the right of the
assumed decimal point.

3. In Format two, the description of identifier-1 must contain the KEY IS
phrase in its OCCURS clause.

Note
A complete discussion of the SEARCH verb is presented in
Section 10, TABLE HANDLING.

SET

^ F u n c t i o n
The SET statement establishes reference points for table handling operations by setting
index-names associated with table elements.

Format one

r

SET
Index-name-1 [, index-name-2]

data-name-1 [data-name-2]...

Index-name-3
TO \ data-name-3

Integer-1

Format two

SET Index-name-4 Index-name•5]

Syntax rules
1. There must not be a name specifying an index data item after UP BY or

DOWN BY option.
2. Data-name-4 must be described as an elementary numeric integer.
3. Integer-1 and integer-2 may be signed. Integer-1 must be a positive value.

General rules
1. Format one is equivalent to moving the value in index-name-3, data-

name-3 or integer-1 to multiple receiving fields written immediately after
the SET verb.

2. Format two is equivalent to reduction (DOWN), or increase (UP), applied
to each of the quantities Written immediately after the SET verb. The
amount of the reduction or increase is specified by a name or value
immediately following the word BY.

3. An index-name should only apply to the OCCURS which defines it.
Note

See Section 10, TABLE HANDLING, for complete informa
tion.

1 January 1980 8-37 FDR 3056

8 PROCEDURE DIVISION

SORT

▶ F u n c t i o n
The SORT statement creates a sort-file by executing input procedures or by transferring
records from another file, sorts the records in the sort-file on a set of specified keys, and
makes available the sorted records to output procedures or to an output file.

Format

ASCENDING
v H o u i i) > K E Y d a t a - n a m e - 1 [, d a t a - n a m e - 2] . .

DESCENDING

INPUT PROCEDURE IS sectlon-name-1 [
THROUGH

THRU
sectlon-name-2]

USING file-name-2

OUTPUT PROCEDURE IS sectlon-name-3 [

GIVING file-name-3

THROUGH

THRU
section-name-4]

Syntax rules
1. SORT statements may appear anywhere except in the Declaratives

portion of the Procedure Division or in an input or output procedure
associated with a SORT statement.

2. In the Data Division, file-name-1 must be described in an SD entry; file-
name-2 and file-name-3 must be described in an FD entry.

General rules
1. At the time of execution of the SORT statement, neither file-name-2 nor

file-name-3 may be open.
2. If the USING phrase is specified, all the records in file-name-2 are

automatically transferred to file-name-1.
3. If the GIVING phrase is specified, all the sorted records are auto

matically written on file-name-3 as the implied output procedure for the
SORT statement.

Note
A complete discussion of the SORT statement is presented in
Section 11, SORT MODULE.
In addition to the SORT statement, two other suitable sort
facilities are available to COBOL programs—the PRIMOS
external sort utility (explained in the Prime User's Guide)
and the internal sort subroutines (explained in the PRIMOS
Subroutines Reference Guide).

FDR 3056 8-38 1 January 1980

PROCEDURE DIVISION

START

Function
The START statement provides a basis for logical positioning, within an Indexed I/O or
Relative I/O file, for subsequent sequential or dynamic retrieval of records.

Format

GREATER THAN
START file-name KEY IS [<^ NOT LESS THAN >] data-name]

EQUAL TO

[INVALID KEY Imperative-statement]

^ Syntax rule
File-name must be the name of a file with sequential or dynamic access.

▶" General rules
1. Option 1:

START file-name.
• In an Indexed file, this option positions the file to the value

contained in the RECORD KEY data-name.
• In a Relative file, this option positions the file to the

value contained in the RELATIVE KEY data-name.
• In either file structure, if the indicated record is not present

in the file, control is passed to DECLARATIVES section if
present; otherwise, the program terminates.

2. Option 2:
START file-name KEY IS data-name.
• In an Indexed file, this option will position the file to the

value contained in data-name (data-name is the name of
either RECORD KEY or one of the ALTERNATE RECORD
KEYs).

• In a Relative file, this option will position the file to the
value contained in data-name as defined in RELATIVE
KEY.

• In either file structure, if the indicated record is not present
in the file, control is passed to the DECLARATIVES section
if present; otherwise, the program terminates.

3. Option 3:

START file-name

GREATER THAN
[KEY IS [J NOT LESS THAN }]data-name]

EQUAL TO

[INVALID KEY imperative-statement]

1 January 1980 8-39 FDR 3056

PROCEDURE DIVISION

For both Indexed I/O and Relative 1-0 files, if the option GREATER or
NOT LESS is specified, the file is positioned for the next access to be
greater than or less than the value specified in the data-name.

4. The INVALID clause or DECLARATIVES is taken if there is no data
satisfying data-name and the STATUS code returned is a 23.

STOP

▶ F u n c t i o n
The STOP statement is used to terminate or delay execution of the object program.

Format

Syntax rule
If a STOP RUN statement appears in a consecutive sequence of imperative statements
within a sentence, it must appear as the last statement in that sequence.

W" General rules
1. STOP RUN terminates execution of a progam, returning control to the

operating system.
2. STOP RUN cannot be used in a called program.
3. If STOP literal is specified, the literal is communicated on the console,

and execution is suspended. Execution is resumed at the next executable
statement in sequence after operator intervention. Presumably, the
operator performs a function suggested by the contents of the literal,
prior to resuming program execution.

STRING

L ' F u n c t i o n
The STRING statement provides juxtaposition of the partial or complete contents of two or
more data items into a single data item.

Format

STRING

, data-name-5

, literal-5

... DELIMITED BY

...DELIMITED BY

I data-name-1 j , data-name-2

j llteral-1 (, llteral-2

| data-name-4 J

| l l teral-4 (

INTO data-name-7 [WITH POINTER data-name-8]

[; ON OVERFLOW Imperative-statement]

data-name-3
lteral-3
SIZE

data-name-6
lteral-6
SIZE

FDR 3056 8-40 1 January 1980

PROCEDURE DIVISION 8

~

~

r

Syntax rules
1. Each literal may be any figurative constant (without the optional word

ALL).
2. All literals must be described as nonnumeric literals. All data-names,

except data-name-8. must be described implicitly or explicitly as usage is
DISPLAY.

3. Data-name-7 must represent an elementary alphanumeric data item
without editing symbols or the JUSTIFIED clause.

4. Data-name-8 must represent an elementary numeric integer data item of
sufficient size to contain a value equal to the size of data-name-7 + 1. The
symbol P may not be used in the PICTURE character-string of data-
name-8.

5. Where data-name-1, data-name-2, ..., or data-name-3 is an elementary
numeric data item, it must be described as an integer without the symbol
P in its PICTURE character-string.

General rules
1. All references to data-name-1, data-name-2, data-name-3, literal-1, liter

al-2, literal-3 apply equally to data-name-4, data-name-5, data-name-6,
literal-4, literal-5, and literal-6, respectively, and all recursions thereof.

2. Data-name-1, literal-1, data-name-2, literal-2, represent the sending
items. Data-name-7 represents the receiving item.

3. Literal-3, data-name-3, indicate the character(s) delimiting the move. If
the SIZE phrase is used, the complete data item defined by data-name-1,
literal-1, data-name-2, literal-2, is moved. When a figurative constant is
used as the delimiter, it stands for a single character nonnumeric literal.

4. When a figurative constant is specified as literal-1, literal-2, literal-3. it
refers to an implicit one character data item whose usage is DISPLAY.

5. When the STRING statement is executed, the transfer of data is governed
by the following rules:

• Those characters from literal-1, literal-2, or from the con
tents of the data item referenced by data-name-1. data-
name-2, are transferred to the contents of data-name-7 in
accordance with the rules for alphanumeric to
alphanumeric moves, except that no space-filling will be
provided.

• If the DELIMITED phrase is specified without the SIZE
phrase, the contents of the data item referenced by data-
name-1, data-name-2. or the value of literal-1, literal-2, are
transferred to the receiving data item, this occurs in the
sequence specified in the STRING statement, beginning
with the leftmost character and continuing from left to right
until the end of the data item is reached, or until the
character(s) specified by literal-3, or by the contents of
data-name-3 are encountered. The character(s) specified
by literal-3 or by the data item referenced by data-name-3
are not transferred.

• If the DELIMITED phrase is specified with the SIZE
phrase, the entire contents of literal-1, literal-2, or the
contents of the data item referenced by data-name-1, data-
name-2, are transferred. The transfer proceeds in the

1 J a n u a r y 1 9 8 0 8 - 4 1 F D R 3 0 5 6

8 PROCEDURE DIVISION

sequence specified in the STRING statement to the data
item referenced by data-name-7, until all data has been
transferred or the end of the data item referenced by data-
name-7 has been reached.

6. If the POINTER phrase is specified, data-name-8 is explicitly available to
the programmer. The programmer is then responsible for setting its
initial value. The initial value must not be less than one.

7. If the POINTER phrase is not specified, the following general rules apply
as if the user had specified data-name-8 with an initial value of 1.

8. When characters are transferred to the data item referenced by data-
name-7, the transfer behaves as though characters were moved, one at a
time, from the source to the data item character position referenced by
data-name-7 and designated by the value of data-name-8. Data-name-8 is
increased by one prior to the move of the next character. The value
associated with data-name-8 is changed during execution of the STRING
statement only by the behavior specified above.

9. At the end of execution of the STRING statement, only the portion of the
data item referenced by data-name-7 (that which was referenced during
the execution of the STRING statement) is changed. All other portions of
the data item referenced by data-name-7 will contain data which was
present before this execution of the STRING statement.

10. Data transfer to data-name-7 terminates when the value in data-name-8
is either less than 1, or exceeds the number of character positions in data-
name-7. Such termination may occur at any point at or after initialization
of the STRING statement. If termination occurs as a result of such a
condition, the imperative statement in an ON OVERFLOW phrase is
executed, if specified.

11. If the ON OVERFLOW phrase is not specified when the conditions
described in General Rule 10 above are encountered, control is trans
ferred to the next executable statement.

12. If delimiters exceed the maximum number of five, the compiler will
abort with error code 113.

SUBTRACT

▶ F u n c t i o n
The SUBTRACT statement subtracts one or more numeric data items from a specified item
and stores the difference.

Format one

SUBTRACT
data-name-1 , data-name-2

, llteral-2literal-1

FROM data-name-3 [ROUNDED]

[ON SIZE ERROR Imperative-statement]

FDR 3056 8-42 1 January 1980

PROCEDURE DIVISION

Format two

r

SUBTRACT
data-name

llteral-1
f \ , data-name-2

, literal-2

data-name-3
} GIVING data-name-4 [ROUNDED]llteral-3

[ON SIZE ERROR Imperative-statement!

Format three

SUBTRACT
CORRESPONDING

CORR
Identifier-1

FROM identlfier-2 [ROUNDED]

[ON SIZE ERROR imperative-statement]

Syntax rules
1. Each data-name must refer to a numeric elementary item, except that

data-name-4 (following GIVING) may be an elementary numeric edited
item.

2. Each literal must be a numeric literal.
3. The maximum size of each operand is 18 decimal digits. If all receiving

data items were to be superimposed upon each other, aligned by their
decimal points, their composite could not exceed 18 decimal digits in
length.

4. In Format three, both identifier-1 and identifier-2 must be group items.

General rules
1. In Format one, the effect of the SUBTRACT statement is to sum the

values of all the operands which precede FROM, and then to subtract
that sum from the value of the item following FROM. The result is stored
in data-name-3.

2. In Format two, all literals and data-names preceding FROM are added
together, the sum is subtracted from data-name-3 or literal-3, and the
result is stored in data-name-4.

3. See the rules for arithmetic statements under PROCEDURE DIVISION,
General Rules. The ROUNDED and ON SIZE ERROR options may be
used when truncation of results could occur.

4. The rules for signs are those presented in FUNDAMENTAL CONCEPTS
OF COBOL, Algebraic Signs.

5. In Format three, each elementary item under identifier-1 is subtracted
from and stored into the corresponding elementary item under identi
fier-2.

1 January 1980 8-43 FDR 3056

8 PROCEDURE DIVISION

UNSTRING

▶ F u n c t i o n
The UNSTRING statement causes contiguous data in a sending field to be separated and
placed into multiple receiving fields.

Format

UNSTRING data-name-1

\ data-name-2
DELIMITED BY [ALL] <

I literal-1

data-name-3
, OR [ALL]

literal-2

INTO data-name-4 [, DELIMITER IN data-name-5] [, COUNT IN data-name-6]

[, data-name-7 [, DELIMITER IN data-name-8] [, COUNT IN data-name-9]] ...

[WITH POINTER data-name-10] [TALLYING IN data-name-11]

C 0N OVERFLOW imperative-statement]

Syntax rules
1. The ALL phrase option is not the figurative constant ALL.
2. Each literal must be a nonnumeric literal. In addition, each literal may

be any figurative constant without the optional word ALL.
3. Data-name-1, data-name-2, data-name-3, data-name-5, and data-name-8,

must be described, implicitly or explicitly, as an alphanumeric data item.
4. Data-name-4 and data-name-7 may be described as either alphabetic

(except that the symbol B may not be used in its picture-string),
alphanumeric, or numeric (except that the symbol P may not be used in
its picture-strings), and must be described as usage is DISPLAY.

5. Data-name-6, data-name-9, data-name-10, data-name-11 must be de
scribed as elementary numeric integer data items (except that the symbol
P may not be used in their picture-strings).

6. No data-name may name a level 88 entry.
7. The DELIMITER IN phrase and the COUNT IN phrase may be specified

only if the DELIMITED BY phrase is specified.

General rules
1. All references to data-name-2, literal-1, data-name-4, data-name-5, and

data-name-6, apply equally to data-name-3, literal-2, data-name-7, data-
name-8, and data-name-9, respectively, and all recursions thereof.

2. Data-name-1 represents the sending area.
3. Data-name-4 represents the data receiving area. Data-name-5 represents

the receiving area for delimiters.
4. Literal-1 or the data item referenced by data-name-2 specifies a de

limiter.
5. Data-name-6 represents the count of the number of characters within

data-name-1, isolated by the delimiters for the move to data-name-4. This
value does not include a count of the delimiter character(s).

FDR 3056 8-44 1 January 1980

PROCEDURE DIVISION

r 6. The data item referenced by data-name-10 contains a value which
indicates a relative character position within the area defined by data-
name-1.

7. The data item referenced by data-name-11 is a counter which records the
number of data items acted upon during the execution of an UNSTRING
statement.

8. When a figurative constant is used as the delimiter, it stands for a single
character, nonnumeric literal.

9. When the ALL phrase is specified, one occurrence (or two or more
contiguous occurrences) of literal-1 (figurative constant or not), or the
contents of the data item referenced by data-name-2, are treated as if it
were only one occurrence. This occurrence is moved to the receiving
data item according to the rules for DELIMITER IN phrase in General
Rule 14 below.

10. When an examination encounters two contiguous delimiters, the current
receiving area is either space or zero filled according to the description
of the receiving area.

11. Literal-1, or the contents of the data item referenced by data-name-2. can
contain any character in the computer's character set.

12. Each literal-1 or the data item referenced by data-name-2 represents one
delimiter. When a delimiter contains two or more characters, all of the
characters must be present in contiguous positions of the sending item
and in the order given to be recoginized as a delimiter.

13. When two or more delimiters are specified in the DELIMITED BY
phrase, an OR condition exists between them. Each delimiter is com
pared to the sending field. If a match occurs, the character(s) in the
sending field is considered to be a single delimiter. No character(s) in the
sending field can be considered as part of more than one delimiter.
Each delimiter is applied to the sending field in the sequence specified
in the UNSTRING statement.

14. When the UNSTRING statement is initiated, the current receiving area is
the data item referenced by data-name-4. Data is transferred from data-
name-1 to data-name-4 according to the following rules:

• If the POINTER phrase is specified, the string of characters
referenced by data-name-1 is examined beginning with the
relative character position indicated by the contents of
data-name-10. If the POINTER phrase is not specified, the
string of characters is examined beginning with the left
most character position.

• If the DELIMITED BY phrase is specified, the examination
proceeds, left to right, until either a delimiter specified by
the value of literal-1 or the data item referenced by data-
name-2 is encountered. (See General Rule 12.) If the
DELIMITED BY phrase is not specified, the number of
characters examined is equal to the size of the current
receiving area. However, if the sign of the receiving item is
defined as occupying a separate character position, the
number of characters examined is one less than the size of
the current receiving area.

• If the end of the data item referenced by data-name-1 is
encountered before the delimiting condition is met, the
examination terminates with the last character examined.

1 J a n u a r y 1 9 8 0 8 - 4 5 F D R 3 0 5 6

8 PROCEDURE DIVISION

• The characters thus examined (excluding the delimiting
character(s), if any) are treated as an elementary
alphanumeric data item, and are moved into the current
receiving area according to the rules for the MOVE
statement.

• If the DELIMITER IN phrase is specified, the delimiting
character(s) are treated as an elementary alphanumeric
data item and are moved into the data item referenced by
data-name-5 according to the rules for the MOVE
statement. If the delimiting condition is the end of the data
item referenced by data-name-1, then the data-name-5 is
space filled.

• If the COUNT IN phrase is specified, a value equal to the
number of characters thus examined (excluding the de
limiter character(s), if any) is moved into the area refer
enced by data-name-6 according to the rules for an elemen
tary move.

• If the DELIMITED BY phrase is specified, the string of
characters is further examined, beginning with the first
character to the right of the delimiter. If the DELIMITED
BY phrase is not specified, the string of characters is
further examined, beginning with the character to the right
of the last character transferred.

• After data is transferred to data-name-4, the current receiv
ing area is data-name-7. The behavior described in the
preceding four paragraphs is repeated until either all the
characters are exhausted in the data item referenced by
data-name-1, or until there are no more receiving areas.

15. The initialization of the contents of the data items associated with the
POINTER phrase or the TALLYING phrase is the responsibility of the
user.

16. The contents of the data item referenced by data-name-10 will be
incremented by one for each character examined in the data item
referenced by data-name-1. When the execution of an UNSTRING
statement with a pointer phrase is completed, data-name-10 will contain
a value equal to the initial value, plus the number of characters
examined in the data item referenced by data-name-1.

17. When the execution of an UNSTRING statement with a TALLYING
phrase is completed, the contents of the data-name-11 will be a value
equal to its initial value, plus the number of data receiving items acted
upon.

18. Either of the following situations causes an overflow condition:
8 An UNSTRING is initiated, and the value in the data item

referenced by data-name-10 is less than one or greater than
the size of the data item referenced by data-name-1.

• If, during execution of an UNSTRING statement, all data
receiving areas have been acted upon, and the data item
referenced by data-name-1 contains characters which have
not been examined.

F D R 3 0 5 6 8 - 4 6 1 J a n u a r y 1 9 8 0

PROCEDURE DIVISION 8

r

19. When an overflow condition exists, the UNSTRING operaion is termi
nated. If an ON OVERFLOW phrase has been specified, the imperative-
statement is executed. If the ON OVERFLOW phrase is not specified,
control is transferred to the next executable statement.

20. The evaluation of subscripting and indexing for the data-names is as
follows:

• Any subscripting or indexing associated with data-name-1,
data-name-10, data-name-11 is evaluated only once, im
mediately before any data is transferred as the result of the
execution of the UNSTRING statement.

• Any subscripting or indexing associated with data-name-2
through data-name-6 is evaluated immediately before the
transfer of data into the respective data item.

21. Up to five delimiters may be specified. If more than five are specified,
the compiler will abort with error code 113.

Note
Binary counter must not be used with the UNSTRING
statement.

Example
ID DIVISION.
PROGRAM-ID. UNSTRING.
ENVIRONMENT DIVISION.
SOURCE-COMPUTER. PR1ME17-1.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 ID-SEND PIC X(17) VALUE '123 45673**90ABC*.
77 D-LIMITER PIC X VALUE '*'.
77 POINTR PIC 99 VALUE 01.
77 TALLY PIC 99 VALUE ZEROES.
01 FIELDS.

02 FIELD-1 PIC X(6).
02 FIELD-2-PIC X(6) .
02 FIELD-3 PIC X(3) .
02 FIELD-4 PIC X(5) .

01 DELIMS.
02 DELIM-1 PIC X VALUE IS SPACE.
02 DELIM-2 PIC X VALUE IS SPACE.
02 DELIM-3 PIC X VALUE IS SPACE.

01 COUNTS.
02 COUNT-1 PIC 9 VALUE IS ZERO.
02 COUNT-3 PIC 9 VALUE IS ZERO.
02 COUNT-4 PIC 9 VALUE IS ZERO.

PROCEDURE DIVISION.
MAIN-PARA.

UNSTRING ID-SEND DELIMITED BY D-LIMITER OR ALL ' '
INTO FIELD-1 DELIMITER IN DELIM-1 COUNT IN COUNT-1

FIELD-2 DELIMITER IN DELIM-2
FIELD-3 DELIMITER IN DELIM-3 COUNT IN COUNT-3
FIELD-4 COUNT IN COUNT-4

1 J a n u a r y 1 9 8 0 8 - 4 7 FDR 3056

PROCEDURE DIVISION

WITH POINTER POINTR
TALLYING IN TALLY
OVERFLOW GO TO O-FLOW-PARA.

GO TO DISPLAY-PARA.
O-FLOW-PARA.

DISPLAY
•OVERFLOW ENCOUNTERED,DISPLAY OF VARIABLES FOLLOWS:'.

DISPLAY-PARA.
DISPLAY 'FIELD 1=' FIELD-1.
DISPLAY 'FIELD 2=' FIELD-2.
EXHIBIT NAMED FIELD-3.
EXHIBIT NAMED FIELD-4.
EXHIBIT NAMED DELIM-1.
DISPLAY 'DELIM 2=' DELIM-2.
DISPLAY 'DELIM 3=' DELIM-3.
DISPLAY 'COUNT 1=' COUNT-1.
DISPLAY 'COUNT 3=' COUNT-3.
DISPLAY 'COUNT 4=' COUNT-4.
EXHIBIT NAMED POINTR.
EXHIBIT NAMED TALLY.
STOP RUN.

USE

^ F u n c t i o n
The USE statement specifies procedures for input/output error handling which are in
addition to the standard procedures provided by the input/output control system.

Format

USE AFTER STANDARD
E X C E P T I O N / (fi l e n a m e

PROCEDURE ON) INPUT
ERROR OUTPUT

1-0

Syntax rules
1. A USE statement, when present, must immediately follow a section

header in the Declaratives section, followed by a period and a space. The
remainder of the section must consist of zero, one. or more procedural
paragraphs which define the procedures to be used.
Example:
PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION. USE sentence,

[paragraph-name, [sentence] ...] ...} ...

2. The USE statement itself is never executed: rather, it defines the
conditions for the execution of the USE procedures.

FDR 3056 8-48 1 January 1980

PROCEDURE DIVISION 8

3. A given file-name may not be associated with more than one DECLAR
ATIVES section.

4. The words EXCEPTION and ERROR are interchangeable.
5. The files implicitly or explicitly referenced in a USE statement need not

all have the same organization or access.

▶ General rules
1. The DECLARATIVES section is executed (by the PERFORM mechanism)

after the standard I/O recovery procedures for the files designated, or
after the invalid key condition arises on a statement lacking the INVALID
KEY clause.

2. After execution of a USE procedure, control is returned to the invoking
routine.

3. Within a USE procedure, there must be no reference to any non-
declarative procedures. Conversely, in the nondeclarative portion, there
must be no reference to procedure-names which appear in the declar
ative portion, except that PERFORM statements may refer to the pro
cedures associated with such a USE statement.

4. Within a USE procedure, no statement may be executed which would
result in the execution of a USE procedure previously invoked but not
completed (that is, a USE procedure, which through previously invoked,
had not yet returned control to the invoking routine).

WRITE

W° Function
The WRITE statement releases a logical record for an output or I/O file.It can also be used
for vertical positioning of lines within a logical page.

Format one

WRITE record-name [FROM data-name-11

AFTER
[ADVANCING

BEFORE

data-name-2
integer
PAGE

LINE
LINESj

Format two
WRITE record-name [FROM data-name-11

[INVALID KEY Imperative-statement]

Syntax rules
1. Format one can only be used for sequential files.
2. Format two can only be used for Relative I/O and Indexed I/O files.
3. Record-name and data-name must not refer to the same storage area.
4. Record-name is the 01 level record-name of a logical record, described in

a record description entry in the File Section of the Data Division.

1 January 1980 8-49 FDR 3056

8 PROCEDURE DIVISION

General rules
1. For both WRITE statement formats, the associated file must be open as

OUTPUT or I/O.
2 In Format one if the FROM option is taken, the information is moved to

the record area prior to the WRITE. If the data being moved is longer
than the receiving field, the data is truncated to the size of the receiving
field. If the receiving field is longer than the data, the remaining area is
filled with spaces.

3. In Format one if the ADVANCING option is taken, print control spacing
is indicated. The first position in the record must be reserved as FILLER
for the print control character being generated.

• If the BEFORE option is taken, a line is written before
advancing.

• If the AFTER option is taken, spacing occurs, and then the
line is written.

. Data-name-2 LINE(s) is the number of spacing lines re
quired between data lines, data-name-2 may be 0 to 62.

• PAGE skips to a new page, then a line is written.
If the ADVANCING option is not taken, the default is one line.

4. In Format one, the value of integer is as described below.

Integer Carriage Control Actions
0 Overprinting
1 Single spacing
2 Double spacing
3 Triple spacing
4 4-line spacing
5 5-line spacing
6 6-line spacing

6 2 6 2 - l i n e s p a c i n g
PAGE Skips to top of new page

5. In Format two for Relative I/O files: prior to a WRITE statement, a valid
unique value must be in the primary RECORD KEY data-name. If the
FROM option is used, the unique value in RECORD KEY data-name must
be in the relative location of data-name-1. If the primary key is not
unique, the invalid statement or the DECLARATIVES section will be
executed. Refer to C-4 in Appendix C for Error Conditions.

6. In Format two for Indexed I/O files: the INVALID KEY clause must be
specified if the DECLARATIVE section is not applicable. The program
will terminate if an error code condition arises.

. For sequential access: If a file is opened as OUTPUT,
records are placed in the file in sequential order. The first
record would have a position of 1, and the record number
returned into the RELATIVE KEY data-name would be 1,
etc.

o c n 1 J a n u a r y 1 9 8 0
F D R 3 0 5 6 ° o u

PROCEDURE DIVISION 8

• For dynamic and random access: The value of the record
number must be placed in the RELATIVE KEY data-
name-1.

▶ E x a m p l e

PROCEDURE DIVISION.
REQUIRED-PARA.

DISPLAY 'ENTER 1 TO CREATE NEW FILE'.
DISPLAY 'ENTER 2 TO UPDATE OLD FILE'.
ACCEPT CREATE-UPDATE.
IF CREATE-UPDATE = '2'

OPEN OUTPUT PRINT-FILE
GO TO UPDATE-ONLY.

CREATE-FILE.
MOVE SPACES TO WS-RECORD.

f O P E N I N P U T C A R D - F I L E ,OUTPUT PRINT-FILE, DIRECTORY-FILE.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

READ-NEXT.
READ CARD-FILE AT END GO TO LIST-DIRECTORY.
WRITE PRINT-LINE FROM CARD-IMAGE.
MOVE SPACES TO DISPLAY-RECORD.
MOVE CORR CARD-RECORD TO DIRECTORY-RECORD-INPUT.
WRITE DIR ECTOR Y-RECORD-OUTPUT

INVALID KEY DISPLAY 'FILE STATUS = ' FILE-STATUS.
GO TO READ-NEXT.

LIST-DIRECTORY.
CLOSE CARD-FILE, DIRECTORY-FILE.
MOVE ' NEWLY CREATED FILE' TO PRINT-LINE.
WRITE PRINT-LINE AFTER ADVANCING 3 LINES.

UPDATE-ONLY.
MOVE SPACES TO PRINT-LINE.
DISPLAY 'END TEST ONE'.
OPEN 1-0 DIRECTORY-FILE.
IF CREATE-UPDATE = '2'

GO TO GET-NEXT-INQUIRY.
CLOSE DIRECTORY-FILE, PRINT-FILE.
GO TO REQUIRED-PARA.

LIST-DIR.
MOVE LOW-VALUES TO PHONE-NUMBER, LAST-NAME, BIRTH-DATE,

STATE, FIRST-NAME.
LIST.

MOVE LOW-VALUES TO PHONE-NUMBER, AT-END-SWITCH.
START DJRECTORY-FILE KEY IS NOT LESS THAN PHONE-NUMBER.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
GO TO READ-NEXT-DIRECTCRY-RECORD.

LIST1.
MOVE LOW-VALUES TO LAST-NAME, AT-END-SWITCH.
START DIRECTORY-FILE KEY IS NOT LESS THAN LAST-NAME.

—^ WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
GO TO READ-NEXT-DIRECTCRY-RECORD.

1 J a n u a r y 1 9 8 0 8 - 5 1 F D R 3 0 5 6

PROCEDURE DIVISION

LIST2.
MOVE LOW-VALUES TO STATE, AT-END-SWITCH.
START DIRECTORY-FILE KEY IS NOT LESS THAN STATE.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
GO TO READ-NEXT-DIRECTORY-RECORD.

LIST 3.
MOVE LOW-VALUES TO BIRTH-DATE, AT-END-SWITCH.
START DIRECTORY-FILE KEY IS NOT LESS THAN BIRTH-DATE.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.
GO TO READ-NEXT-DIRECTORY-RECORD.

LIST4.
MOVE LOW-VALUES TO FIRST-NAME, AT-END-SWITCH.
START DIRECTORY-FILE KEY IS NOT LESS THAN FIRST-NAME.
WRITE PRINT-LINE FROvl HEADER AFTER ADVANCING PAGE.

READ-NEXT-DIRECTORY-RECORD.
READ DIRECTORY-FILE NEXT RECORD AT END

MOVE 1 TO AT-END-SWITCH.
MOVE DIRECTORY-RECORD-OUTPUT TO PRINT-LINE.
WRITE PRINT-LINE.
GO TO READ-NEXT-DIRECTORY-RECORD.

LIST-DONE.
EXIT.

*
GET-NEXT-INQUIRY.

DISPLAY 'ENTER TRANSACTION TYPE'.
DISPLAY ' fr = READ FILE SEQ1 .
DISPLAY ' + = ADD'.
DISPLAY ' - = DELETE'.
DISPLAY ' / = CHANGE'.
DISPLAY ' * = QUIT1.
ACCEPT ACCEPT-TRANSACTION-TYPE FROM TTY.
IF ACCEPT-TRANSACTION-TYPE = '+' GO TO ADDITION.
IF ACCEPT-TRANSACTION-TYPE = '-' GO TO DELETION.
IF ACCEPT-TRANSACTION-TYPE = '/', GO TO CHANGE.
IF ACCEPT-TRANSACTION-TYPE = '*' , PERFORM WRAPUP, STOP RUN
IF ACCEPT-TRANSACTION-TYPE = '#', GO TO READ-FILE.
DISPLAY 'INVALID TRANSACTION TYPE = '

f A C C E P T - T R A N S A C T I O N - T Y P E .
DISPLAY 'TRY AGAIN'.
GO TO GET-NEXT-INQUIRY.

NO-SUCH-NAME.
DISPLAY ' NO SUCH RECORD = ' DISPLAY-DIR.
GO TO GET-NEXT-INQUIRY.

*
ADDITION.

DISPLAY 'ENTER LATA RECORD FCR ADD'.
PERFORM FORMAT-INPUT.
PERFORM MOVE-REC.
WRITE DIRECTORY-RECORD-OUTPUT INVALID KEY

DISPLAY FILE-STATUS
DISPLAY DISPLAY-DIR.

GO TO GET-NEXT-INQUIRY.

FDR 3056 g _ 5 2 1 J a n u a r y 1 9 8 0

PROCEDURE DIVISION 8

r

DELETION.
DISPLAY 'ENTER LAST NAME OF ENTRY TO BE DELETED'.
ACCEPT LAST-NAME FROM TTY.
READ DIRECTORY-FILE KEY IS LAST-NAME

INVALID KEY GO TO NO-SUCH-NAME.
DELETE DIRECTORY-FILE RECORD INVALID KEY

GO TO NO-SUCH-NAME.
GO TO GET-NEXT-INQUIRY.

CHANGE.
DISPLAY 'ENTER KEY TO BE CHANGED*.
DISPLAY 'LAST-NAME =1'.
DISPLAY 'STATE = V .
DISPLAY 'BIRTH-DATE =3'.
DISPLAY 'FIRST-NAME =4'.
ACCEPT GO-TO-NAME.
GO TO READ-ALT1 READ-ALT2 READ-ALT3 READ-ALT4

DEPENDING ON GO-TO-NAME.
DISPLAY 'WRONG TYPE ENTERED TRY AGAIN', GO TO CHANGE

READ-ALT1.
DISPLAY 'ENTER LAST-NAME".
ACCEPT WS-LAST-NAME.
MOVE SPACES TO DIRECTORY-RECCRD-OUTPUT.
MOVE WS-LAST-NAME TO LAST-NAME.
READ DIRECTORY-FILE KEY IS LAST-NAME

INVALID KEY DISPLAY 'LAST-NAME = ' LAST-NAME
DISPLAY 'FILE STATUS = ' FILE-STATUS
DISPLAY DISPLAY-DIR
GO TO GET-NEXT-INQUIRY.

GO TO CHANGE-RECORD.
*
READ-ALT2.

DISPLAY 'ENTER STATE '.
ACCEPT WS-STATE.
MOVE SPACES TO DIRECTORY-RECCRD-OUTPUT.
MOVE WS-STATE TO STATE.
READ DIRECTORY-FILE KEY IS STATE

INVALID KEY DISPLAY 'STATE = ' STATE
DISPLAY 'FILE STATUS = ' FILE-STATUS
DISPLAY DISPLAY-DIR
GO TO GET-NEXT-INQUIRY.

GO TO CHANGE-RECORD.
k

READ-ALT3.
DISPLAY 'ENTER BIRTH-DATE'.
ACCEPT WS-BIRTH-DATE.
MOVE SPACES TO DIRECTORY-RECCRD-OUTPUT.
MOVE WS-BIRTH-DATE TO BIRTH-DATE.
READ DIRECTORY-FILE KEY IS BIRTH-DATE

INVALID KEY DISPLAY 'BIRTH-DATE = ' BIRTH-DATE

1 J a n u a r y 1 9 8 0 8 - 5 3
FDR 3056

8 PROCEDURE DIVISION

DISPLAY 'FILE STATUS = ' FILE-STATUS
DISPLAY DISPLAY-DIR
GO TO GET-NEXT-INQUIRY.

GO TO CHANGE-RECORD.
*
READ-ALT4.

DISPLAY 'ENTER FIRST-NAME1 .
ACCEPT WS-FIRST-NAME.
MOVE SPACES TO DIRECTORY-RECCRD-OUTPUT.
MOVE WS-FIRST-NAME TO FIRST-NAME.
READ DIRECTORY-FILE KEY IS FIRST-NAME

INVALID KEY DISPLAY 'FIRST-NAME = ' FIRST-NAME
DISPLAY 'FILE STATUS = ' FILE-STATUS
DISPLAY DISPLAY-DIR
GO TO GET-NEXT-INQUIRY.

*
CHANGE-RECORD.

DISPLAY DISPLAY-DIR.
PERFORM FORMAT-INPUT.

*
MOVE-REC.

IF WS-RECORD = SPACES
DISPLAY 'NO DATA ENTERED TRY AGAIN'
GO TO GET-NEXT-INQUIRY.

IF WS-LAST-NAME NOT = SPACES
MOVE WS-LAST-NAME TO LAST-NAME.

IF WS-FIRST-NAME NOT = SPACES
MOVE WS-FIRST-NAME TO FIRST-NAME.

IF WS-ADDRESS NOT = SPACES
MOVE WS-ADDRESS TO ADDRESS.

IF WS-CITY NOT = SPACES
MOVE WS-CITY TO CITY.

IF WS-PHONE-NUMBER NOT = SPACES
MOVE WS-PHONE-NUMBER TO PHONE-NUMBER.

IF WS-STATE NOT = SPACES
MOVE WS-STATE TO STATE.

IF WS-BIRTH-DATE NOT = SPACES
MOVE WS-BIRTH-DATE TO BIRTH-DATE.

MOVE-NEXT.
EXIT.

*
REWRITE-RECORD.

REWRITE DIRECTORY-RECCRD-OUTPUT INVALID KEY,
GO TO NO-SUCH-NAME.

GO TO GET-NEXT-INQUIRY.

READ-FILE.
MOVE ZEROS TO PERFORM-COUNT.
DISPLAY 'ENTER NUMBER OF RECORDS TO BE READ' .
ACCEPT PERFORM-COUNT.
IF PERFOPM-COUNT = ZEROS

DISPLAY 'NO RECORD COUNT ENTERED'

FDR 3056 g _ 5 4 1 J a n u a r y 1 9 8 0

PROCEDURE DIVISION 8

r GO TO GET-NEXT-INQUIRY.
IF PERFORM-COUNTl NOT NUMERIC

PERFORM RIGHT-JUSTIFY.
*
READ-TYPE.

DISPLAY 'ENTER SECONDARY KEY TO BE READ*.
DISPLAY 'PHONE-NUMBER =1'.
DISPLAY 'LAST-NAME =2'.
DISPLAY 'STATE = 3' .
DISPLAY 'BIRTH-DATE =4'.
DISPLAY 'FIRST-NAME =5'.
ACCEPT GO-TO-READ.
IF GO^TO-READ IS LESS THAN 1 OR GO-TO-READ IS GREATER THAN

DISPLAY 'INVALID SECONDARY KEY TRY AGAIN'
GO TO READ-TYPE.

IF GO-TO-READ = 1 PERFORM READ-1
ELSE IF GO-TO-READ = 2 PERFORM READ-2

ELSE IF GO-TO-READ = 3 PERFORM READ-3
ELSE IF GO-TO-READ = 4 PERFORM READ-4

ELSE IF GO-T'O-READ = 5 PERFORM READ-5.
PERFORM READ-FILE-GO THROUGH READ-FILE-EXIT.

k

READ-1.
MOVE LOW-VALUES TO PHONE-NUMBER.
START DIRECTORY-FILE KEY IS NOT LESS THAN PHONE-NUMBER.

READ-2.
MOVE LOW-VALUES TO LAST-NAME.
START DIRECTORY-FILE KEY IS NOT LESS THAN LAST-NAME.

READ-3.
MOVE LOW-VALUES TO STATE.
START DIRECTORY-FILE KEY IS NOT LESS THAN STATE.

READ-4.
MOVE ZEROS TO BIRTH-DATE.
START DIRECTORY-FILE KEY IS NOT LESS THAN BIRTH-DATE.

READ-5.
MOVE LOW-VALUES TO FIRST-NAME.
START DIRECTORY-FI LE KEY IS NOT LESS THAN FIRST-NAME.

READ-FILE-GO.
IF PERFORM-COUNT = 0 GO TO READ-FILE-EXIT.
READ DIRECTORY-FILE NEXT RECORD

AT END MOVE ZEROS TO PERFORM-COUNT
GO TO READ-FILE-EXIT.

DISPLAY DISPLAY-DIR.
SUBTRACT 1 FROM PERFOFM-COUNT.
GO TO READ-FILE-GO.

READ-FILE-EXIT.
GO TO GET-NEXT-INQUIRY.

r

WRAPUP.
PERFORM LIST-DIR.

1 J a n u a r y 1 9 8 0 8 - 5 5 FDR 3056

8 PROCEDURE DIVISION

MOVE 'END OF INDEXED TEST TO CHANGE FILE' TO PRINT-LINE.
DISPLAY 'END OF INDEXED TEST'.
CLOSE PRINT-FILE, DIRECTORY-FILE.

*
FORMAT-INPUT.

MOVE SPACES TO WS-RECORD.
DISPLAY 'ENTER LAST NAME'.
ACCEPT WS-LAST-NAME.
DISPLAY 'ENTER FIRST NAME'.
ACCEPT WS-FIRST-NAME.
DISPLAY 'ENTER ADDRESS'.
ACCEPT WS-ADDRESS.
DISPLAY 'ENTER CITY'.
ACCEPT WS-CITY.
DISPLAY 'ENTER PHONE NUMBER'.
ACCEPT WS-PHONE-NUMBER.
DISPLAY 'ENTER STATE XX' .
ACCEPT WS-STATE.
DISPLAY 'ENTER BIRTH-DATE MMDDYY'.
ACCEPT WS-BIRTH-DATE.

*
RIGHT-JUSTIFY.

IF PER-CO(l) NUMERIC AND
PER-CO(2) NOT NUMERIC AND
PER-CO(3) NOT NUMERIC
M O V E P E R - C O (l) T O P E R - C O (3) *
MOVE '0' TO PER^O(l) PER-CO(2)
GO TO READ-TYPE.

IF PER-CO (1) NUMERIC AND
PER-CO(2) NUMERIC AND
PER-CO (3) NOT NUMERIC
MOVE PER-CO (2) TO PER-CO(3)
MOVE PER-CO (1) TO PER-CO (2)
MOVE '0' TO PER-CO(1) .

FDR 3056 g _ c . g 1 J a n u a r y 1 9 8 0

Inter-programcommunication

DEFINITION
Inter-Program Communication provides a facility by which a program can communicate with
one or more other programs. Control may be transferred from one program to another within a
runfile, and both programs may have access to the same data items.
Inter-module communication of data is made possible through the use of the LINKAGE SEC
TION of the Data Division, by the CALL statement, and by the USING list.

LINKAGE SECTION
The LINKAGE SECTION in a program is meaningful only in a called program, and only if the
CALL statement in the calling program contains a USING phrase.

The LINKAGE SECTION describes data made available in memory from the calling program
which is to be referred to in the called program.

No space is allocated in a program for data items referenced by data-names in the LINKAGE
SECTION of that program. Procedure Division references to such items are resolved at execu
tion time by equating the references in the called program to the location used in the calling
program. Thus, Record Description entries in the LINKAGE SECTION provide data-names by
which data areas reserved by other programs may be referenced.
Data items defined in the LINKAGE SECTION of the called program may be referenced in the
Procedure Division of that called program only if:

• They are specified as operands of the USING clause of the Procedure Division
header or are subordinate to such operands, and

• The called program is under the control of a CALL statement that includes a
USING clause.

See the example at the end of this section.
The structure of the LINKAGE SECTION is that described for the WORKING-STORAGE
SECTION. Any Record Description clause may be used to describe items in the LINKAGE
SECTION except:

• The VALUE clause may only be specified for level-88 items.
• Data-names used in the LINKAGE SECTION must be unique (may not be

qualified).
• The programmer must ensure proper correspondence between an argument

in a CALL statement and the data-name in a USING list on a subprogram
Procedure Division header. Arguments and data-names must be either level-
01 or level-77 items.

• Items in the LINKAGE SECTION which bear no hierarchical relationship to
one another need not be grouped into records. These are classified and defined

1 September 1981 9-1 FDR3056

9 INTER-PROGRAM COMMUNICATION

as noncontiguous elementary items. They may be defined in separate level-77
entries Such Data Description entries must include a level-number 77, a
data-name, and a PICTURE clause or the USAGE IS INDEX clause.

PROCEDURE DIVISION USING

▶ F u n c t i o n

In a called program, the USING clause allows the program to access data areas stored by the
calling program.

Format

PROCEDURE DIVISION [USING data-name ...]

where each of the data-name operands is an entry in the LINKAGE SECTION of the subpro
gram and has level 77 or 01. Addresses are passed from an external CALL in one-to-one
correspondence to the operands in the USING list of the Procedure Division header so that data
in the calling program may be manipulated in the subprogram.

CALL
▶ F u n c t i o n
The CALL statement allows one program to communicate with one or more other programs. It
causes control to be transferred from one program to another within a runfile.

Format

CALL literal-1 [USING data-name-1 [, data-name-2]...]

▶ Syntax ru les
1. The CALL statement appears in the calling program. The called program,

which must be named at compile time, is specified by name as literal-1. The
program named by literal-1 may be written in a source language other than
COBOL.

2. Literal-1 must be a non-numeric literal.
3. The USING phrase is included in the CALL statement only if there is a

USING phrase in the Procedure Division header of the called program.
Corresponding USING phrases in the calling and the called programs must
have the same number of operands. Up to 126 data-names are allowed. They
must have level 01 or 77 and may not be subscripted.

4. Each operand in the USING phrase must have been defined as a data item in
the FILE SECTION, WORKING-STORAGE SECTION, or LINKAGE SEC
TION and must have a level-number of 01 or 77. These data-names may be
qualified when they refer to data items defined in the FILE SECTION.

General rules

1. The execution of a CALL statement transfers control to the called program.
2. A program is in its initial state the first time it is called within a runfile. On

all other entries into the called program, the state of the program remains the
same as when control last passed from its EXIT statement back to the
calling program. This includes all data fields and the status and positioning
of all files.

FDR3056 9-2 1 September 1981

INTER-PROGRAM COMMUNICATION 9

~

3. Called programs can contain CALL statements. However, a called pro
gram must not contain a CALL statement that directly or indirectly calls
the calling program.

4. The data-names specified by the USING phrase of the CALL statement
indicate those data items available to a calling program, that may be
referred to in the called program. The order in which the data-names
appear in the USING phrases of the two programs is critical; the data-
names in the USING phrase of the CALL statement in the calling program
are interpreted as corresponding on a one-to-one basis with those in the
USING phrase in the Procedure Division header of the called program.
Corresponding data-names refer to a single set of data which is available
to the called and calling programs. Correspondence is positional, not by
name. There is no such correspondence for index-names, however, since
index-names in the calling and called programs always refer to separate
indexes.

Note
See Section 8. PROCEDURE DIVISION, for additional in
formation.

EXIT PROGRAM
The EXIT PROGRAM statement specifies the logical end of a called program.

Format

EXIT PROGRAM.

▶" Syntax rule
The EXIT PROGRAM statement may be in a paragraph by itself. However. Prime COBOL
does not require it.

r ▶ General rule
The EXIT PROGRAM statement, appearing in a called subprogram, causes control to be
returned to the next executable statement after a CALL in the calling program. See Section
8 for detailed discussion.

ENTER
An ENTER statement is classified as a compiler-directing statement: it acts as a modifier to
a subsequent CALL statement.

Format

ENTER
COBOL

ASSEMBLER

Syntax rules
1. A called subprogram may have been written in COBOL, FORTRAN,

ASSEMBLER, etc. language. The ENTER statement provides the means
to identify the language in which a subprogram is written.

1 January 1980 9-3 FDR 3056

9 INTER-PROGRAM COMMUNICATION

2. ENTER ASSEMBLER tells the compiler that the ensuing callee is not a
COBOL subprogram.

3 ENTER COBOL tells the compiler that the ensuing callee is a COBOL
subprogram.lt may also be used following a CALL statement. This
traditional usage is optional; after any CALL statement, ENTER COBOL
is assumed.

Note
Additional information for ENTER statement is presented in
Section 8.

Example

Filename = CALLER

ID DIVISION.
PROGRAM-ID. CALLER.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 WS-ITEMS.

05 WS-VALUE-1 PIC 99.
05 WS-VALUE-2 PIC 9 (5) .
05 WS-VALUE-3 PIC 9.
05 WS-VALUE-4 PICX(6).
05 WS-VALUE-5 PIC AAA.

PROCEDURE DIVISION.
MA IN-PARA.

MOVE 'ABC TO WS-VALUE-5.
MOVE 11111 TO WS-VALUE-2.
EXHIBIT NAMED WS-VALUE-2.
EXHIBIT NAMED WS-VALUE-5.
CALL 'CALLED' USING WS-ITEMS.

DISPLAY
•VALUES AFTER CALL STATEMENT IS EXECUTED1

EXHIBIT NAMED WS-VALUE-2.
EXHIBIT NAMED WS-VALUE-5.

Filename = CALLED

ID DIVISION.
PROGRAM-ID. CALLED.
ENVIRONMENT DIVISION.
[ATA DIVISION.
WORKING-STORAGE SECTION.
01 WS-TEST PIC 9 (5) VALUE 22222.
LINKAGE SECTION.

n a 1 J a n u a r y 1 9 8 0
F D R 3 0 5 6 y *

01 WS-ITEM.
05 WS-VALUE-1 PIC 99.
05 WS-VALUE-2 PIC 9 (5) .
05 WS-VALUE-3 PIC X(7) .
05 ANY-NAME PIC AAA.

PROCEDURE DIVISION USING WS-ITEM.
MAIN-PARA.

MOVE WS-TEST TO WS-VALUE-2.
MOVE 'DEF' TO ANY-NAME.

EXIT-PARA.
EXIT PROGRAM.

OPTIONA L-STOP-PARA*
STOP RUN.

INTER-PROGRAM COMMUNICATION 9

1 J a n u a r y 1 9 8 0 9 - 5 F D R 3 0 5 6

Table handling

DEFINITION
Table Handling provides a capability for defining tables of contiguous data items and
accessing those items relative to their position in the table. The OCCURS clause is the
language facility provided for specifying how many times an item is to be repeated. Each
item may be identified through use of a subscript or an index.

DATA DIVISION
The maximum table size permissible in this compiler is 32,767 bytes.

OCCURS
The OCCURS clause eliminates the need for separate entries for repeated data items.
Furthur, it supplies information required for the application of subscripts or indexes.

Format

OCCURS Integer-1 TIMES

ASCENDING
[1 } KEY IS data-name-1 [, data-name-2]. . .]

DESCENDING

[INDEXED BY Index-name-1 [, Index-name-2]...]

Syntax rules
1. The OCCURS clause must not be used in a data description entry having

a level number 01, 66, 77. or 88.
2. The maximum OCCURS specification (integer-1) is 32,766.
3. The minimum OCCURS specification (integer-1) is 2.
4. Data-name-1 must either be the name of the subject entry containing the

OCCURS clause, or the name of an entry subordinate to the subject
entry.

5. Data-name-2, etc.. must be the name of an entry subordinate to the group
item which is the subject of this entry.

6. Data-names in the KEY IS phrase must not contain an OCCURS clause
except where data-name-1 is the subject of the entry.

7. There must not be any entry that contains an OCCURS clause between
the data-names in the KEY IS phrase and the subject of the entry, except
where data-name-1 is the subject of the entry.

1 January 1980 10-1 FDR 3056

10 TABLE HANDLING

8. All data-names used in the OCCURS clause may be qualified; however,
they must not be subscripted or indexed.

9. An INDEXED BY phrase is required if the subject of this entry, or an
entry subordinates to this entry, is to be referenced by indexing. The
index-names identified by this phrase are not defined elsewhere, since
their allocation and format are dependent on the hardware (system); not
representing data, the index-names cannot be associated with any data
hierarchy.

10. Each index-name must be an unique word within the program.

General rules
1. The OCCURS clause defines tables and other homogenous sets of

repeated data items. When the OCCURS clause is used, the data-name
which is the subject of the entry must be referred to by subscripting or
indexing.

2. Except for the OCCURS clause itself, all data description clauses ^
associated with an item containing an OCCURS clause apply to each
occurrence of the item being described.

3. The value of integer-1 represents the exact number of occurrences of the
subject entry.

4. The KEY IS phrase indicates that the repeated data is arranged in
ascending or descending order according to the values contained in data-
name-1, data-name-2, etc. The ascending or descending order is de
termined by the rules for the comparison of operands. (See Section 4,
Numeric Comparisons and Non-Numeric Comparisons.) The data-names *
are listed in their descending order of significance.

5. When the INDEXED BY phrase is omitted, subscripting is used to
indicate an individual element within a list, or within a table of like
elements which do not have individual data-names.

6. When the INDEXED BY phrase is used, an index is assigned to a table of
like elements, with individual items in the table being identified by
index-name. For example:

05 MON^TAB OCCURS 12 TIMES INDEXED BY INDX
ASCENDING KEY MONTH-NO.
10 MONTH-NO PIC 99.
10 MONTH-VALUE PIC XXX.

FIND-MONTH.
SEARCH ALL MON-TAB

WHEN MONTH-NO (INDX) = MONTH-ACCEPT
MOVE MONTH-VALUE (INDX) TO PRINT-MONTH.

FDR 3056 - i q _ 2 1 J a n u a r y I f

TABLE HANDLING 10

Table initialization
Table initialization, if required, may be achieved either in the Working-Storage Section
(explained below) or in the Procedure Division by using appropriate MOVE statements.
In the Working-Storage Section of the Data Division, tables can be initialized in one of two
ways:

• If the elements in a table do not need to be individually initialized, then
the VALUE clause is specified in the data description entry containing the
table name. The subordinate data description entry will then be given an
OCCURS clause defining the structure of the table.
Examples:

01 A-TABLE VALUE ZEROS.
05 B-TABLE PIC X(3) OCCURS 100 TIMES.

01 STATE-TABLE VALUE 'CALAMAPAVA'.
05 STATE PIC XX OCCURS 5 TIMES.

If the elements in a table need to be individually initialized, then a VALUE
clause is specified in each table element entry. The table will then be
redefined by using the REDEFINES entry with the subordinate entry
containing an OCCURS clause.
Example:

01 WAREHOUSE.
05 FILLER PIC 99
05 FILLER PIC X(22)
05 FILLER PIC 99
05 FILLER PIC X(22)
05 FILLER PIC 99
05 FILLER PIC X(22)

01 WARE-HOUSE REDEFINES WAREHOUSE.
05 HOUSES OCCURS 3 TIMES.

10 HOUSE-NO PIC 99.
10 HOUSE-NAME PIC X (22) .

VALUE 10.
VALUE 'BOSTON DISTRICT BRANCH'.
VALUE 11.
VALUE 'NEW YORK CITY BRANCH ' .
VALUE 12.
VALUE 'HOUSTON HOME OFFICE '.

Note
The VALUE clause is not permitted in a data description
entry specifying an OCCURS or REDEFINES clause, or in
any entry subordinate to one specifying an OCCURS or
REDEFINES clause.

Indexing and subscripting
Indexing and subscripting are the two methods of accessing the individual elements in a
able established by the OCCURS clause To specify a desired individual table element
follow the table element's data-name by a parenthesized index or subscript.
An index is an index-name coded in an INDEXED BY phrase in an OCCURS clause The
value ot an index corresponds to the occurrence number of the desired element.

1 January 1980 10-3 FDR 3056

10 TABLE HANDLING

A subscript is an integer appended in parenthesis to a data-name. The subscript value
represents the occurrence of the desired element.
INDEXED BY phrase: The positioning of the INDEXED BY phrase appears in the OCCURS
clause format. As indicated, the INDEXED BY phrase is appended to the OCCURS clause.
The INDEXED BY phrase is required if the subject of an entry, or one subordinates to that
entry, is to be referred to by indexing. The index-name identified by this phrase is not
defined elsewhere; allocation and format are defined by the compiler. In other words, an
index-name is declared not by the usual method of level-number, name and Data Descrip
tion clauses, but implicitly by appearance in the "INDEXED BY index-name" appendage to
an OCCURS clause.
The format of the INDEXED BY phrase is:

v. .

[INDEXED BY Index-name-1 [, Index-name-2]...]

Index-name is equivalent to an index-item; it must be uniquely named. This compiler
assigns a full word for each index-name defined.
An index-item may only be referred to by a SET statement, a SEARCH statement, a CALL
statement USING list, a Procedure header USING list, as the variation item in PERFORM
VARYING and PERFORM UNTIL, or in a relational condition. In all cases, the process is
equivalent to dealing with a binary word integer subscript. A maximum of three indexes
may be used on any given data-name.
Direct indexing: Direct indexing is specified by using an index-name in the form of a
subscript, for example, ELEMENT(INDX-l).
Consider the following illustration:

* >

il TABLE-A.
05 ELEMENT OCCURS 6 TIMES INDEXED BY INDX-1

SET INDX-1 TO 4.
MOVE ELEMENT(INDX-1) TO PRINT-FIELD.

ELEMENT(INDX-l) in the example above would refer to the fourth element of the table.
The MOVE stalement would move the contents of the ELEMENT to a field called PRINT-
FIELD.
Relative indexing: Relative indexing may be specified wherever indexing can be ^fieo.
Using the sample TABLE-A defined in the example above, the same results could be
achieved with relative indexing; namely,

MOVE ELEMENT (INDX-1 + 3) TO PRINT-FIELD.

will move the contents of the fourth ELEMENT to a field named PRINT-FIELD (assuming
that INDX-1 has a value of 1).

FDR 3056
10-4 1 January 1980

TABLE HANDLING 10

In the instance above, index-name is followed by a space, followed by one of the operators
+ or -. followed by another space, followed by an unsigned, integer numeric literal, all
delimited by the balanced pair of separators left parenthesis and right parenhesis.
The occurrence number resulting from relative indexing is determined by incrementing or
decrementing the index by the value of the literal. s
When a statement is executed which refers to an indexed table element, the value in the
associated index must neither be less than one. nor greater than the highest occurence
number of an element in the table. This restriction applies equally to direct indexing and
relative indexing.
The general format for direct indexing and relative indexing is:

data-name Index-name-1 [j ± \ literal-2]

condition-name \ f literal-1

Index-name-2 [j ± [literal-4]

literal-3

Index-name-3 [{ ± } llteral-6]

[,

I])
llteral-5

Subscripting: Subscripting may be used in lieu of indexing. In such instances, the INDEXED
BY phrase is omitted.
The format for subscripting is:

data-name (subscript-1 [, subscript-2 [, subscript-3]])

The subscript can be represented either by a positive numeric literal or by a data-name. The
data-name must be a numeric elementary item which represents an integer. Further, the
data-name as subscript may be qualified but not itself subscripted.
The subscript data-name may be signed, but the value must be positive. The subscript value
indicates the position of the item in a table. The lowest value permitted is one. indicating the
first position in the table. Subsequent positions are indicated by sequential values 2. 3. 4,
etc.. up to the highest permissible value, which is the maximum number of occurrences of
the item specified in the OCCURS clause.
The subscript can be used on any table. For example:

01 ARRAY.
05 ELEMENT, OCCURS 3, PICTURE S9(4), SIGN TRAILING SEPARATE.

The coding in the example above would cause the allocation of storage as shown below:

ELEMENT(1)

ELEMENT (2)

ARRAY consisting of fifteen
characters; each item has 4
digits and a separate sign.

ELEMENT (3

1 January 1980 10-5 FDR 3056

10 TABLE HANDLING

• For literal subscripting, the following MOVE statement could be written:

MOVE ELEMENT(2) TO QUANTITY.

This would result in moving the contents of the second ELEMENT in
ARRAY (previous example) to a field named QUANTITY.

• For data-name subscripting, additional data description entries are re
quired; an example is illustrated below:

01 ARRAY.
05 ELEMENT, OCCURS 3, PICTURE X(4

01 SUBSCRIPTNO PIC 99.
01 PART-NO PIC X(4) .

MOVE 2 TO SUBSCRIPTNO.
GO TO TABLERUN.

TABLERUN.
MOVE ELEMENT(SUBSCRIPTNO) TO PART-NO.

The MOVE statements in the example above would results in the data-
name subscript, SUBSCRIPTNO, being set to a value of 2, and the contents
of the second ELEMENT of ARRAY being moved to the field called PART-
NO.
The data-name may not be subscripted if it is being used for any of the
following functions:

• When it is being used as a subscript
• When it appears as the defining name of a data description

entry
• When it appears as data-name-2 in a REDEFINES clause

A subscript must be delimited by a pair of parenthesis following the table element data-
name. When two or more, subscripts are required, they are written in the order of
successively less inclusive dimensions of the data organization, and should be separated by
commas. A maximum of three levels of subscripting is permitted for any given data item.
A subscript value is changed in the Procedure Division via the MOVE, ADD, SUBTRACT,
MULTIPLY, DIVIDE, or COMPUTE verbs. The SET verb cannot be used on a subscript data-
name.

Multi-dimensional tables
The following example presents Data Division entries for a multi-dimensional table,
TABLE-PLUS.

F D R 3 0 5 6 1 0 - 6 * J a n u a r y 1 9 8 0

TABLE HANDLING 10

01 TABLE-PLUS.
05 TYPE OCCURS 10 TIMES.

10 PART-NO PIC X(4) .
10 COLOR PIC X OCCURS 10 TIMES.
10 CONTROL OCCURS 7 TIMES.

15 Cl PIC X.
15 C2 PIC XX OCCURS 4 TIMES.

r

When a table has more than one dimension, the data-name of the desired item is followed
by a list of subscripts, one for each OCCURS clause to which the item is subordinate.
In such a list, the first subscript applies to the first OCCURS clause to which the item is
subordinate. The second subscript applies to the next most encompassing level. The third,
and last, subscript applies to the lowest level OCCURS clause being accessed.
Therefore, using the table depicted in the example above, the statement

MOVE C2(8, 6, 4) TO TEMP.

would MOVE the contents of the fourth occurrence of the field C2. in the sixth repetition of
the field CONTROL, in the eighth occurrence of the field TYPE to a field called TEMP.
Similarly, the statement

MOVE C2(10, 7, 4) TO TEMP,

would move the contents of the last occurrence of the field C2 to the field labeled TEMP.

PROCEDURE DIVISION

SET
The SET statement permits the manipulation of index-names and index items.for table-
handling purposes.

Format one

Index-name-3
index-name-1 [, Index-name-2]...

; E T ■ (V T O I d a t a - n a m e - 3
data-name-1 [, data-name-2]...

integer-1

Format two

I UP BY) 1 data-name-4 /
SET Index-name-4 [> index-name-5] • •

j DOWN BY V j integer-2 V

1 January 1980 10-7 FDR 3056

10 TABLE HANDLING

Syntax rules
1. All references to index-name-1, data-name-1 and index-name-4 apply

equally to index-name-2, data-name-2, and index-name-5, respectively.
2. Data-name-4 must be described as an elementary numeric integer.
3. There must not be a name specifying an index data item after UP BY or

DOWN BY option.
4. Integer-1 and integer-2 may be signed. However, integer-1 must have

positive value.

General rules
1. In any SET statement, data-names are restricted to binary items, except

that a decimal item may follow on the word TO.
2. An index-name should only apply to the OCCURS which defines il.
3. The SET verb cannot be used on a subscripted data-name.
4. Index-names are considered related to a given table and are defined by

being specified in the INDEXED BY clause.
5. If inex-name-3 is specified, the value of the index before the execution of

th SET stalement must nol exceed the occurrence number of an element
in the associated table.

6. In Format one, the following action occurs:
• Index-name-1 is set to a value causing it to refer to a table

element. That element corresponds in occurrence number
to the Iable element referenced by index-name-3, data-
name-:}, or integer-1. If data-name-3 is an index data item,
or if index-name-3 is related to the same table as index-
name-1, no conversion takes place.

• If data-name-1 is an index data item, il may be set equal to
either the contents of index-name-3 or data-name-3. where
data-name-3 is also an index data item; no conversion takes
place in either case.

• If data-name-1 is not an index data item, it may be set only
to an occurrence number which corresponds to the value of
index-name-3. Neither data-name-3 nor integer-1 can be
used in this case.

• The process is repeated for index-name-2, data-name-2.
etc.. if specified. Each time, the value of index-name-3 or
data-name-3 is used as it was at the beginning of the
execution of the statement.

7. In Format two. the contents of index-name-4 are incremented (UP BY) or
decremented (DOWN BY) by a value corresponding to the number of
occurrences represented by the value of integer-2 or data-name-4; there
after, the process is repeated for index-name-5, etc. Each lime the value of
data-name-4 is used as it was at the beginning of the execution of the
statement.

8. Data in ihe following table represents the validity of various operand
combinations in the SET stalement.

K D H 3 0 5 6 1 0 - 8 1 J a n u a r y 1 5) 8 0

TABLE HANDLING 10

r Table 10-1. Validity of operand combinations in the SET statement
Sending Item Receiving Item

Integer Data Index-name Index Data
Item Item

Integer Literal Valid
Integer Data Item Valid
Index-name Valid Valid Valid*
Index Data Item Valid* Valid*

* - No conversion takes place.

SEARCH
The SEARCH statement is used to search a table for a table element which satisfies the
specified condition. The associated index-name is adjusted to indicate that table element.

Format one

identifier-2
S E A R C H i d e n t i fi e r - 1 [V A R Y I N G <]

/ index-name-1

[; AT END imperative-statement-1]

; WHEN condition-1

[; WHEN condition-2

imperative-statement-2

NEXT SENTENCE

imperative-statement-3

NEXT SENTENCE

Format two

SEARCH ALL identifier-1 [; AT END imperatlve-statement-1]

identifier-3EQUALS
data-name-1 ' IS EQUAL 1

; W H E N < ^ / I S

condition-name-1

EQUALS
data-name-2 ■' IS EQUAL T

[A N D) / I S =

condition-name-2

imperative-statement-2

NEXT SENTENCE

literal-1

identifier-4

literal-2

1 January 1980 10-9 FDR 3056

10 TABLE HANDLING

^ Syntax rules
1. In both Formats one and two, identifier-1 must not be subscripted or

indexed, but its description must contain an OCCURS clause and an
INDEXED BY clause. The description of identifier-1 in Format two must
also contain the KEY IS phrase in its OCCURS clause.

2. Identifier-2, when specified, must be described as USAGE IS INDEX, or
as a numeric elementary data item without any positions to the right of
the assumed decimal point.

3. In Format one, condition-1, condition-2, may be any condition as
described under Conditional Expressions in Section 4.

4. In Format two, all referenced condition-names must be defined as having
only a single value. The data-name associated with a condition-name
must appear in the KEY clause of identifier-1. Each data-name-1, data-
name-2 may be qualified. Futher, each data-name-1, data-name-2 must
be indexed by the first index-name associated with identifier-1 along
w i t h o t h e r i n d i c e s o r l i t e r a l s a s r e q u i r e d . ' ^

5. In Format two, when a data-name in the KEY clause of identifier-1 is
referenced, or when a condition-name associated with a data-name in
the KEY clause of identifier-1 is referenced, all preceding data-names in
the KEY clause of identifier-1 or their associated condition-names must
also be referenced.

^ General rules
1. Format one SEARCH statement enables a serial type of search operation,

starting with the current index setting.
• If, at the start of execution of the SEARCH statement, the

index-name associated with identifier-1 contains a value
which corresponds to an occurrence number greater than
the highest permissible occurrence number for identifier-1,
the specified imperative-statement-1 is executed; if the AT
END phrase is not specified, control passes to the next
executable sentence.

• If, at the start of execution of the SEARCH statement, the —^
index-name associated with identifier-1 contains a value
corresponding to an occurrence number not greater than
the highest permissible occurrence number for identifier-1,
the SEARCH statement operates by evaluating the condi
tions in the order in which they are written making use of
the index settings, wherever specified, to determine the
occurrence of those items to be tested. If none of the
conditions are satisfied, the index-name for identifier-1 is
incremented to obtain reference to the next occurrence.
The process is repeated, using the new index-name set
tings. If the new value of the index-name settings for
identifier-1 corresponds to a table element outside the
permissible range of occurrence values, the search termi
nates as indicated in the rule above. If one of the conditions
is satisfied upon its evaluation, the search terminates
immediately and the imperative statement associated with
that condition is executed; the index-name remains set at /^^
the occurrence which caused the condition to be satisfied.

2. In Format one, if the VARYING phrase is not used, the index-name
which is used for the search operation is the first (or only) index-name

F D R 3 0 5 6 1 0 - 1 0 1 J a n u a r y 1 . 9 8 0

TABLE HANDLING 10

~

r

appearing in the INDEXED BY phrase of identifier-1. Any other index-
names for identifier-1 remain unchanged.

3. In Format one, if the VARYING index-name is specified, and if index-
name-1 appears in the INDEXED BY phrase of identifier-1, that index-
name is used for this search. If this is not the case, or if the VARYING
identifier-2 phrase is specified, the first (or only) index-name given in
the INDEXED BY phrase of identifier-1 is used for the search. In
addition, the following operations will occur:

• If the VARYING index-name-1 phrase is used, and if index-
name-1 appears in the INDEXED BY phrase or another
table entry, the occurrence number represented by index-
name-1 is incremented by the same amount as, and at the
same time as, the occurrence number represented by the
index-name associated with identifier-1 is incremented.

• If the VARYING identifier-2 phrase is specified, and iden
tifier-2 is an index data item, then the data item referenced
by identifier-2 is incremented by the same amount as, and
at the same time as, the index associated with identifier-1 is
incremented. If identifier-2 is not an index data item, the
data item referenced by identifier-2 is incremented by the
value one at the same time as the index referenced by the
index-name associated with identifier-1 is incremented.

4. In Format two SEARCH statement, results of the SEARCH ALL operation
are predictable only when:

• The data in the table is ordered in the same manner as
described in the ASCENDING/DESCENDING KEY clause
associated with the description of identifier-1.

• The contents of the key(s) referenced in the WHEN clause
are sufficient to identify an unique table element.

5. When Format two SEARCH ALL is used, a onserial type of search
operation may take place; the initial setting of the index-name for
identifier-1 is ignored and its setting is varied during the search opera
tion, with the restriction that at no time is it set to a value that exceeds the
value which corresponds to the last element of the table, or that is less
than the value that corresponds to the first element of the table. The
length of the table is discussed in the OCCURS clause at the beginning of
this section.
If any of the conditions specified in the WHEN clause cannot be satisfied
for any setting of the index within the permitted range, control is passed
to imperative-statement-1 of the AT END phrase, when specified, or to
the next executable sentence when this phrase is not specified; in either
case the final setting of the index is not predictable. If all the conditions
can be satisfied, the index indicates an occurrence that allows the
conditions to be satisfied, and control passes to imperative-statement-2.

6. If imperative-statement-1, imperative-statement-2. or imperative-
statement-3, does not terminate with a GO TO statement, control passes
to the next executable sentence.

7. In Format two, the index-name that is used for the search operation is the
first (or only) index-name that appears in the INDEXED BY clause of
identifier-1. Any other index-names for identifier-1 remain unchanged.

8. If identifier-1 is a data item subordinate to another data item containing
an OCCURS clause (providing for a two or three dimensional table), an

1 J a n u a r y 1 9 8 0 1 0 - 1 1 F D R 3 0 5 6

10 TABLE HANDLING

index-name must be associated with each dimension of the table. This is
accomplished through the INDEXED BY phrase of the OCCURS clause.
Only the setting of the index-name associated with identifier-1 (and
identifier-2 or index-name-1, if present) is modified by the execution of
the SEARCH statement. To search an entire two or three dimensional
table, it is necessary to execute a SEARCH statement several times. Prior
to each execution of a SEARCH statement, SET statements must be
executed to adjust index-names to appropriate settings.

9. A flowchart of the Format one SEARCH operation contaning two WHEN
phrases is presented in Figure 10-1.

START

INDEX SETTING: \ >ATEND
HIGHEST PERMISSIBLE 1 — s>
OCCURRENCE NUMBER

TRUE IMPERATIVE-
STATEMENT-2

TRUE IMPERATIVE-
STATEMENT-3

FALSE

NCREMENT INDEX-
NAME FOR

DATA-NAME-1
(INDEX-NAME-1
IF APPLICABLE)

INCREMENT INDEX-NAME-1
IFOR A DIFFERENTTABLE)

OR DATA-NAME-2

Figure 10-1. Format One SEARCH Operation Flowchart

~ '

FDR 3056 10-12 1 January 1980

Sort module

DEFINITION
The Sort facility of Sort Module is capable of ordering one or more record files, according
to a set of user-specified keys contained within each record.
To accomplish the Sort, the user must specify the File-Control SELECT clause in the
Environment Division, the sort file description (SD) entry in the Data Division, and the
SORT statement in the Procedure Division. The basic elements of the Sort, however, are the
SD entry with its associated record description entries and the SORT statement.

Note
Prime COBOL does not currently support the Merge facility
of the ANSI standard Sort/Merge Module.

DATA DIVISION

File section
An SD file description gives information about the sizes and the names of the data records
associated with the file to be sorted. There are no label procedures which the user can
control, and the rules for blocking and internal storage are peculiar to the SORT statement.

SORT file description
The sort file description furnishes information concerning the physical structure, identi
fication, and record names of the file to be sorted.

Format

SD file-name

[RECORD CONTAINS [Integ er-1 TO] integer-2 CHARACTERS]

[DATA <
RECORD IS)

RECORDS ARE \
data-name-1 [, data-name-2]...].

Syntax rules
1. The level indicator SD identifies the beginning of the sort file description

and must precede the file-name of each sort-file. Note, an FD level
indicator must precede the file-name of each file providing input or
output to the sort operation.

2. The clauses which follow the file-name are optional, and their order of
appearance is immaterial.

3. One or more record description entries must follow the SD entry;
however, no READ, WRITE, OPEN or CLOSE statements may be ex
ecuted for this file.

1 January 1980 11-1 FDR 3056

11 SORT MODULE

4. The file must be specified in a SELECT clause.

PROCEDURE DIVISION

RELEASE
The RELEASE statement transfers records to the initial phase of a SORT operation.

Format

RELEASE record-name [FROM identifier]

W* Syntax rules
1. A RELEASE statement may be specified only within an input procedure

associated with a SORT statement for a file whose SD entry contains
record-name.

2. Record-name must be the name of a logical record in the associated SD
entry. Record-name may be qualified.

3. Record-name and identifier must not refer to the same storage area.

W* General rules
1. The execution of a RELEASE statement causes the record-name to be

released to the initial phase of a SORT operation.
2. If the FROM phrase is specified, the contents of the identifier are moved

to the record-name, then the contents of the record-name are released to
the sort file. Moving takes place according to the rules for the MOVE
statement without the CORRESPONDING phrase. The information in the
record-name is no longer available, but the information in the identifier
is still available.

3. After the execution of the RELEASE statement, the information in
record-name is no longer available, unless the associated sort file is
named in a SAME RECORD AREA clause, in which case record-name is
still available as a record of other files specified in the clause. When
control passes from the input procedure, the file consists of all those
records placed in it by the execution of RELEASE statements.

RETURN
The RETURN statement obtains sorted records from the final phase of a SORT operation.

Format

RETURN file-name RECORD [INTO identifier]

AT END imperative-statement

Syntax rules
1. File-name must be described by an SD entry in the Data Division.
2. A RETURN statement may be specified only within an output procedure

associated with a SORT statement for file-name.
3. The INTO phrase must not be used if the input file contains logical

records of various sizes.

FDR 3056 11-2 1 January 1980

SORT MODULE 11

^

4. The record areas associated with identifier and file-name must not be the
same storage area.

General rules
1. If more than one record description is associated with file-name, these

records automatically share the same storage area; that is, the area is
implicitly redefined. After the execution of the RETURN statement, any
data items which lie beyond the range of the current record are
undefined.

2. When the RETURN statement is executed, the next record from file
name is made available for processing in the record areas associated
with the sort-file.

3. If the INTO phrase is specified, the current record is moved from the
input area to the area specified by identifier according to the rules for
the MOVE statement without the CORRESPONDING phrase. The im
plied MOVE does not occur if there is an AT END condition. Any
subscripting or indexing associated with identifier is evaluated after the
record has been returned and immediately before it is moved to the
identifier.

4. When the INTO phrase is used, the data is available in both the input
record area and the data area associated with identifier.

5. After all the records have been returned from the file-name, the AT END
condition occurs. The contents of the record areas associated with the file
are undefined when that condition occurs. After the execution of the
imperative-statement in the AT END phrase, no RETURN statement may
be executed as part of the current output procedure.

SORT
The SORT statement creates a sort-file by executing input procedures or by transferring
records from another file, sorts the records in the sort-file on a set of specified keys, and, in
the final phase of the sort operation, makes available each record from the sort-file, in
sorted order, to some output procedures or to an output file.

Format

ASCENDING
flle-name-1 ON < J> KEY data-name-1 [, data-name-2] . . .

DESCENDING

INPUT PROCEDURE IS sectlon-name-1 [
THROUGH

THRU
sectlon-name-2]

USING file-name-2

OUTPUT PROCEDURE IS sectlon-name-3 [

GIVING flle-name-3

THROUGH

THRU
section-name-4]

1 January 1980 11-3 FDR 3056

11 SORT MODULE

Syntax rules
1. SORT statements may appear anywhere except in the Declaratives

portion of the Procedure Division or in an input or output procedure
associated with a SORT statement.

2. File-name-1 must be described in an SD entry in the Data Division.
3. If the USING phrase is specified and the file-name-1 contains variable-

length records, the size of the records contained in the file-name-2 must
not be less than the smallest record nor larger than the largest record
described for file-name-1. If file-name-1 contains fixed-length records,
the size of the records contained in file-name-2 must not be larger than
the largest record described for file-name-1.

4. Data-name-1, data-name-2, etc., are KEY data-names and are subject to
the following rules:

• The data items identified by KEY data-names must be
described in records associated with file-name-1.

• KEY data-names may be qualified.
• The data items identified by KEY data-names may not be

variable-length data items, nor may they name group items
which contain variable-occurrence data items.

• If file-name-1 has more than one record description, then
the data items identified by KEY data-names need be
described in only one of the record descriptions. In other
words, the same character positions referenced by a KEY
data-name in one record description entry are taken as the
KEY in all records of the file-name-1.

• The data items identified by KEY data-names may not
contain an OCCURS clause or be subordinate to an item
which contains an OCCURS clause.

5. Section-name-1 specifies the first or the only section in an input pro
cedure. Section-name-2, if specified, indentifies the last section of an
input procedure.
Section-name-3 and section-name-4 apply to an output procedure.

6. The words THRU and THROUGH are equivalent.
7. In the Data Division, file-name-2 and file-name-3 must be described in an

FD entry, not in an SD entry.
8. If the GIVING phrase is specified and the file-name-3 contains variable-

length records, the size of the records contained in the file-name-1 must
not be less than the smallest record nor larger than the largest record
described for file-name-3. If file-name-3 contains fixed-length records,
the size of the records contained in file-name-1 must not be larger than
the largest record described for file-name-3.

General rules
1. If file-name-1 contains only fixed-length records, any record in file-

name-2 released to file-name-1 is left justified, and any unused character
positions at the right end of the record will be filled with blanks.

2. The data-names following the word KEY are listed in order of decreasing
significance no matter how they are divided into KEY phrases. For
example, data-name-1 is the major key, data-name-2 is the next most
significant key, etc.

F D R 3 0 5 6 1 1 - 4 1 J a n u a r y 1 9 8 0

SORT MODULE 11

r

• When the ASCENDING phrase is specified, the sorted
sequence will be from the lowest key value to the highest
key value.

• When the DESCENDING phrase is specified, the sorted
sequence will be from the highest key value to the lowest
key value.

• The key values are compared according to the rules for
comparison of operands in a relation condition. (See Condi
tional Expressions in Section 4 and IF Statement in Section
8.)

3. If the contents of all KEY data items associated with two or more data
records are equal, then the order of return for the records is undefined.

4. The input procedure must consist of one or more sections that are written
consecutively and do not form a part of any output procedure. In order to
transfer records to file-name-1, the input procedure must include at least
one RELEASE statement. Control must not be passed to the input
procedure except when a related SORT statement is being executed.
The input procedure can include any procedures needed to select,
create, or modify records. There are three restrictions on the procedural
statements within the input procedure:

• The input procedure must not contain any SORT
statements.

• The input procedure must not contain any explicit transfers
of control to points outside the input procedure; GO TO and
PERFORM statements in the input procedure are not per
mitted to refer to procedure-names outside the input pro
cedure. COBOL statements are allowed that will cause an
implied transfer of control to Declaratives.

• The remainder of the Procedure Division must not contain
any transfers of control to points inside the input pro
cedure; GO TO and PERFORM statements in the re
mainder of the Procedure Division must not refer to pro
cedure-names within the input procedure.

5. If an input procedure is specified, control is passed to the input
procedure before the file-name-1 is sequenced by the SORT statement.
Before control passes the last statement in the input procedure, the file-
name-3 must not be open. The compiler inserts a'return mechanism at the
end of the last section in the input procedure and when control passes the
last statement in the input procedure, the records that have been
released to the file-name-1 are sorted..

6. During the execution of the input procedure, the output procedure or any
USE AFTER EXCEPTION procedures, no statement manipulating the
files referenced by, or accessing the record areas associated with file-
name-2 or file-name-3 may be executed.

7. If the USING phrase is specified, all the records in file-name-2 are
automatically transferred to file-name-1. At the time of execution of the
SORT statement, file-name-2 must not be open. For file-name-2, the
execution of the SORT statement causes the following actions to be
taken:

• The processing of the file is initiated. The initiation is
performed as if an OPEN statement with the INPUT phrase
had been executed.

1 J a n u a r y 1 9 8 0 1 1 - 5 F D R 3 0 5 6

11 SORT MODULE

• The logical records are obtained and released to the sort
operation. Each record is obtained as if a READ statement
with the NEXT and the AT END phrase had been executed.

• The processing of the file is terminated. The termination is
performed as if a CLOSE statement without optional
phrases had been executed.

8. The output procedure must consist of one or more sections that are
written consecutively and do not form a part of any input procedure. In
order to make sorted records available for processing, the output pro
cedure must include at least one RETURN statement. Control must not be
passed to the output procedure except when a related SORT statement is
being executed. The output procedure may consist of any procedures
needed to select, modify or copy the records that are being returned, one
at a time in sorted order, from the sort file. There are three restrictions
on the procedural statements within the output procedure:

• The output procedure must not contain any SORT
statements.

• The output procedure must not contain any explicit
transfers of control to points outside the output procedure;
GO TO and PERFORM statements in the output procedure
are not permitted to refer to procedure-names outside the
output procedure. COBOL statements are allowed that will
cause an implied transfer of control to Declaratives.

• The remainder of the Procedure Division must not contain
any transfers of control to points inside the output pro
cedure; GO TO and PERFORM statements in the re
mainder of the Procedure Division must not refer to pro
cedure-names within the output procedure.

9. If an output procedure is specified, control passes to it after file-name-1
has been sequenced by the SORT statement. The file-name-2 must not be
open. The compiler inserts a return mechanism at the end of the last
section in the output procedure and when control passes the last
statement in the output procedure, the return mechanism terminates the
sort, and then passes control to the next executable statement after the
SORT statement. Before entering the output procedure, the sort pro
cedure reaches a point at which it can select the next record in sorted
order, when requested. The RETURN statements in the output procedure
are the requests for the next record.

10. If the GIVING phrase is specified, all the sorted records are auto
matically written on file-name-3 as the implied output procedure for the
SORT statement. At the time of the execution of the SORT statement,
file-name-3 must not be open. For file-name-3, the execution of the SORT
statement causes the following actions to be taken:

• The processing of the file is initiated. The initiation is
performed as if an OPEN statement with the OUTPUT
phrase had been executed.

• The sorted logical records are returned and written onto
the file. The records are written as if a WRITE statement
without any optional phrases had been executed.

• The processing of the file is terminated. The termination is
performed as if a CLOSE statement without optional
phrases had been executed.

F D R 3 0 5 6 1 1 - 6 1 J a n u a r y 1 9 8 0

SORT MODULE 11

~
11. If file-name-3 contains only fixed-length records, any record in file-

name-1 containing less character positions is padded with blanks at the
right end of the record when the record is returned from file-name-3.

A listing file for sample program SAMPLE.SORT is presented below.

Rev 17.0 CCBOL
(0001)
(0002)
(0003)
(0004)
(0005)
(0006)
(0007)
(0008)

(0010)
(0011)
(0012)
(0013)
(0014)
(0015)
(0016)
(0017)
(0018)
(0019)
(0020)
(0021)
(0022)
(0023)
(0024)
(0025)
(0026)
(0027)
(0028)
(0029)
(0030)
(0031)
(0032)
(0033)
(0034)
(0035)
(0036)
(0037)
(0038)
(0039)
(0040)
(0041)
(0042)
(0043)
(0044)
(0045)
(0046)
(0047)
(0048)
(0049)
(0050)
(0051)

Source File: SAMPLE.SORT
id division,
p rog ram- id . so r t i t .
environment division,
configurat ion sect ion.
solrcek:omputer. prime,
object-computer. prime,
input-output section,
fi l e - c o n t r o l .

select net-file-in assign to pfms.
select net-file-out assign to pfms.
select net-file-work assign to pfms.

data division,
fi le sec t ion ,
s d n e t - fi l e - w o r k .
01 sales-records.

0 5 e m p l - n o p i c 9 (6) .
0 5 D E P T P I C 9 9 .
0 5 N E T - S A L E S P I C 9 (7) V 9 9 .
0 5 N A M E - A D R P I C X (6 1) .
0 5 M O N T H P I C X X .

FD NET-FILE-IN
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID 'FILEIN'.

01 NET-CARD-IN.
0 5 EMPL-NO-IN PIC 9 (6) .
0 5 D E P T - I N P I C 9 9 .

88 OFF-SITE-LOCATION VALUE 7, 9.
05 NET-SALES-IN PIC 9(7)V99.
05 NAME-ADDR-IN PIC X (61).
0 5 M C N T H - I N P I C 9 9 .

FD NET-FILE-OUT
LABEL RECORDS ARE STANDARD
VALUE OF FILE-ID 'FILEOUT'.

01 NET-CARD-OUT.
05 EMPL-NO-OUT PIC 9 (6) .
0 5 D E P T - O U T P I C 9 9 .
05 NET-SALES-OUT PIC 9(7)V99.
05 NAME-ADDR-OUT PIC X(61) .
0 5 M O N T H - O U T P I C 9 9 .

WORKING-STORAGE SECTION.
77 SUM-DEPT

08/13/79 14:25

01 MONTH-ACCEPT
88 VALID-MONTH

01 TABLE-VALUE.
02 FILLER
02 FILLER
02 FILLER
02 FILLER
02 FILLER
02 FILLER
02 FILLER

PIC S9(14)V99 VALUE ZEROS.
PIC 99 VALUE ZERO.

VALUE 01 THRU 12.

PIC X(5) VALUE '01 JAN' .
PIC X(5) VALUE '02FEB' .
PIC X(5) VALUE '03MAR'.
PIC X(5) VALUE '04APR'.
PIC X(5) VALUE '05MAY' .
PIC X(5) VALUE '06JUN'.
PIC X(5) VALUE '07JUL'.

1 January 1980 11-7 FDR 3056

11 SORT MODULE

(0052)
(0053)
(0054)
(0055)
(0056)
(0057)
(0058)
(0059)
(0060)
(0061)
(0062)
(0063)
(0064)
(0065)
(0066)
(0067)
(0068)
(0069)
(0070)
(0071)
(0072)
(0073)
(0074)
(0075)
(0076)
(0077)
(0078)
(0079)
(0080)
(0081)
(0082)
(0083)
(0084)
(0085)
(0086)
(0087)

)
(0089)
(0090)
(0091)
(0092)
(0093)
(0094)
(0095)
(0096)
(0097)
(0098)
(0099)
(0100)
(0101)
(0102)
(0103)
(0104)
(0105)

02 FILLER PIC X(5) VALUE '08AU3' .
02 FILLER PIC X(5) VALUE '09SEP'.
02 FILLER PIC X(5) VALUE •10OCT'.
02 FILLER PIC X(5) VALUE '11NOV'.
02 FILLER PIC X(5) VALUE '12DEC'.

01

MONTH-TABLE REDEFINES TABLE-VALUE.
02 MON-TAB OCCURS 12 TIMES INDEXED BY INDX

ASCENDING KEY MONTH-NO.
03 MONTH-NO PIC 99.
03 MONTH-VALUE PIC XXX.

TABLE-AREA.
03 SITE OCCURS 2 TIMES INDEXED BY INDXl.

0 5 MONTHS OCCURS 12 TIMES INDEXED BY INDX2.
07 DEPT-TOTAL OCCURS 7 TIMES INDEXED BY INDX3

PIC S9(14)V99 COMP-3.

01 DISPLAY-TOTALS.
02 FILLER
02 PRINT-MONTH
02 FILLER
02 PRINT-SUM

PROCEDURE DIVISION.
START-PARA.

PERFOFM INT-PARA
VARYING INDXl FROM

UNTIL INDXl > 2
AFTER INDX2 FRCM 1

UNTIL INDX2 > 12
AFTER INDX3 FRCM 1

UNTIL INDX3 > 7.
GO TO SORT-PARA.

PIC XX VALUE SPACE.
PIC XXX VALUE SPACE.
PIC X(16) VALUE ' TOTAL SALES = '
PIC ZZ,ZZZ,ZZZ,ZZZ,ZZZ.99-.

1 BY 1

BY 1

BY 1

INT-PARA.
MOVE ZEROS TO DEPT-TOTAL (INDXl, INDX2, INDX3)

SORT-PARA.
SORT NET-FILE-WORK

ASCENDING KEY DEPT
DESCENDING KEY NET-SALES
INPUT PROCEDURE SCREEN-DEPT
GIVING NET-FILE-OUT.

GO TO GET-TOTALS.

SCREEN-DEPT SECTION.
S-DEPT1.

OPEN INPUT NET-FILE-IN.
S-DEPT2.

READ NET-FILE-IN
AT END GO TO S-DEPT-FINAL.

SET INDXl TO 2.
IF NOT OFF-SITE-LOCATION

MOVE NET-CARD-IN TO SALES-RECORDS
RELEASE SALES-RECORDS
SET INDXl TO 1.

FDR 3056 11-8 1 January 1980

SORT MODULE 11

r

r

(0106) SET INDX2 TO MONTH-IN.
(0107) SET INDX3 TO DEPT-IN.
(0108) ADD NET-SALES-IN TO DEPT-TOTAL (INDXl, INDX2, INDX3)
(0109) GO TO S-DEPT2.
(0110) S-DEPT-FINAL.
(0111) CLOSE NET-FILE-IN.
(0112) S-DEPT-END.
(0113) EXIT.
(0114)
(0115) GET-TOTALS SECTION.
(0116) GET-TOTAL.
(0117) DISPLAY 'ENTER MONTH XX (01-12) OR ENTER 99 TO QUIT'
(0118) ACCEPT MONTH-ACCEPT.
(0119) IF MONTH-ACCEPT =99
(0120) GO TO DONE-PARA.
(0121) IF NOT VALID-MONTH
(0122) GO TO GET-TOTAL.
(0123) PERFORM FIND-MONTH.
(0124) SET INDXl TO 1.
(0125) SET INDX2 TO MONTH-ACCEPT.
(0126) DISPLAY 'IN STATE1.
(0127) GET-NEXT.
(0128) SET INDX3 TO 1.
(0129) PERFORM ADD-TOTALS 7 TIMES.
(0130) MOVE SUM-DEPT TO PRINT-SUM.
(0131) DISPLAY DISPLAY-TOTALS.
(0132) MOVE ZEROS TO SUM-DEPT.
(0133) SET INDXl UP BY 1.
(0134) IF INDXl > 2
(0135) GO TO GET-TOTAL.
(0136) DISPLAY 'OUT OF STATE1.
(0137) GO TO GET-NEXT.
(0138)
(0139) ADD-TOTALS.
(0140) ADD DEPT-TOTAL (INDXl, INDX2, INDX3) TO SUM-DEPT.
(0141) SET INDX3 UP BY 1.
(0142)
(0143) FIND-MONTH.
(0144) SEARCH ALL MON-TAB
(0145) WHEN MONTH-NO(INDX) = MONTH-ACCEPT
(0146) MOVE MONTH-VALUE (INDX) TO PRINT-MONTH.
(0147)
(0148) DONE-PARA.
(0149) STOP RUN.

No Errors, No Warnings, Prime V-Mode COBOL, Rev 17.00.12 <SORTIT>

1 January 1980 11-9 FDR 3056

Indexed sequential files

DEFINITION
The indexed sequential system incorporates the concept of accessing data selectively in a
sequentially structured file. (Only the index which points to the data is sequential.) The data
base is created in ascending sequential order on a direct access device, and concurrently a
hierarchy of indices is constructed. The indices can be used to directly locate a given record
within the file.
The sequence of the indices relating to a record depends on a field within the data records
which is specified by the programmer, in a RECORD KEY clause. The record key(s) are the
elements which identify each record in a file.

FILE CONTROL

Format

SELECT file-name ASSIGN TO PFMS

ORGANIZATION IS INDEXED

SEQUENTIAL
[; ACCESS MODE IS { RANDOM

DYNAMIC

; RECORD KEY IS data-name-1

[; ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]] . . .

[; FILE STATUS IS data-name-3].

General rules

SELECT file-name

1. The SELECT clause specifies the name of the indexed sequential file.
Refer to ENVIRONMENT DIVISION for rules.

ORGANIZATION IS INDEXED

2. This clause specifies that the file named in the SELECT statement
contains data organization by indices, and that it is to be processed by the
Multiple Index Data Access System, MIDAS. (See Appendix B.)

SEQUENTIAL
[ACCESS MODE IS <f RANDOM

DYNAMIC

1 January 1980 12-1 FDR 3056

12 INDEXED SEQUENTIAL FILES

3. The ACCESS MODE clause specifies how an indexed file is written or
retrieved.

• SEQUENTIAL: If access mode is not specified, the default
is SEQUENTIAL. This access mode specifies that records
will be written or retrieved sequentially. When a WRITE
statement is used, the record must be submitted in ascend
ing sequence by RECORD KEY value. A READ statement
retrieves the record sequentially.

• RANDOM: When the RANDOM is specified, the records
are to be written or retrieved randomly, based on the value
placed in the RECORD KEY field prior to a READ or
WRITE. The complete RECORD KEY value must be placed
in data-name-1, prior to READ, otherwise the record will
not be found. Random mode precludes a sequential READ
or WRITE.

• DYNAMIC: When DYNAMIC access method is specified, a -^
program can read or write randomly or sequentially.

RECORD KEY IS data-name-1

4. The RECORD KEY clause specifies the data item within each record
which is used for the primary index.

• Data-name-1 must be defined in the Record Description
associated with the FD entry for the file.

0 Data-name-1 must be the first entry in the Record Descrip
tion. Multiple Record Descriptions must have the same
corresponding data description for the record key.

• Data-name-1 must not be specified with an OCCURS
clause, or be contained within a group affected by an
OCCURS clause.

• Data-name-1 must not be specified with a P character in its
PICTURE clause, or be described with a separator sign (/).

8 Data-name-1 must have the same description and relative
location as when the file was created.

• Data-name-1 cannot exceed 32 characters.
8 The value contained within data-name-1 must be unique,

duplicates are invalid.

[ALTERNATE RECORD KEY IS data-name-2 [WITH DUPLICATES]]...

5. The ALTERNATE RECORD KEY clause specifies a data item, which is
used for a secondary index, within each record. There may be up to five
alternate record keys. Alternate record key cannot be embedded within
the primary record key. See rules under RECORD KEY.
Specification of WITH DUPLICATES allows keys containing the same
value to be placed in the file. If WITH DUPLICATES is specified.
duplicates must be allowed for the corresponding secondary index when
the MIDAS template is created; the admissability of duplicates cannot be
changed at the program level.

[FILE STATUS IS data-name-3]

F D R 3 0 5 6 1 2 - 2 1 J a n u a r y 1 9 8 0

INDEXED SEQUENTIAL FILES 12

6. The FILE STATUS is a two-character (one-word) unsigned field de
scribed in the Working-Storage Section. The operating system moves a
value into data-name-3 following the execution of every statement which
explicitly or implicitly references the file. This value indicates the
execution status of the statement to the program. Following a successful
READ or WRITE, etc., data-name-3 contains 00. The complete status
codes are described in Table C-4, Appendix C.

PROCEDURE DIVISION
The COBOL statements listed in this section apply to their application in indexed file
processing.
A complete description of all COBOL verbs, their functions, formats, and rules, is provided
in Section 8. PROCEDURE DIVISION.
The INVALID KEY clause may be written for indexed files in the START, READ. WRITE,
REWRITE or DELETE statements. Its format is:

. . . [INVALID KEY Imperative-statement]

The INVALID KEY clause is executed if there is an error status code condition, in which
case control is transferred to imperative-statement. If this clause is not present, control is
passed to the DECLARATIVES section for the corresponding file. If neither is specified, the
program will abort during execution. The result for the INVALID condition is returned via
the ERROR STATUS code. See Table C-4.

CLOSE

Format

CLOSE flle-name-1 [, flle-name-2]

▶ General rule
This is the only option possible for an indexed file.

DELETE

Format

DELETE file-name RECORD [; INVALID KEY Imperative-statement]

General rules
1. The DELETE statement logically removes a data record from the indexed

file together with all the indices.
2. In SEQUENTIAL access, the record to be deleted must have been

successfully read before a delete can be executed. The primary RECORD
KEY cannot be changed between the READ and DELETE statement,
otherwise the INVALID KEY clause will be activated.

3. RANDOM and DYNAMIC access modes only need to place the value of
the record to be deleted in the RECORD KEY field. If that record does not
exist in the file, the INVALID KEY statement is executed and the ERROR
STATUS field will contain a value of 23.

1 January 1980 12-3 FDR 3056

12 INDEXED SEQUENTIAL FILES

OPEN

Format

OPEN
1-0
INPUT
OUTPUT

flle-name-1 [, file-name-2]

General rules
1. A file opened as INPUT can only be accessed in a READ statement.
2. A file opened as OUTPUT can only be accessed in a WRITE statement
3. A file opened as I/O can be either read or written with lock record.

Note
Table C-5 in Appendix C specifies the types of OPEN
statements which are permissible with the different ACCESS
modes.

READ

Format one (SEQUENTIAL or DYNAMIC)

READ file-name [NEXT] RECORD [INTO data-name-1]

AT END imperative-statement]

Format two (SEQUENTIAL, RANDOM or DYNAMIC)

READ file-name RECORD INTO data-name-11

KEY IS data-name-2]

INVALID KEY imperative-statement]

General rules
1. Format one. Option one (SEQUENTIAL ACCESS only):

READ file-name RECORD INTO data-name-1]

[AT END imperative-statement]

A file is read sequentially based on the primary index (RECORD KEY).
If one of the secondary index sequences is to be used, the index must be
established via a Format two, Option two READ statement. Thereafter,
the file can be read with a Format one, Option one format. If the INTO
clause is used, the data record is automatically moved into data-name-1.
When AT END is specified, control is passed when the complete file has
been read.

FDR 3056 12-4 1 January 1980

INDEXED SEQUENTIAL FILES 12

r 2. Format one, Option two (DYNAMIC and SEQUENTIAL ACCESS):

READ file-name [NEXT] RECORD [INTO data-name-1]

[AT END imperative-statement]

• For DYNAMIC access: This option allows the programmer
to change from a random mode to sequential reading with
the NEXT record clause. The INTO clause automatically
moves the data-record into data-name-1. The AT END
clause transfers control at the end of the file.

. If the NEXT RECORD option is not specified, the value of
the record to be retrieved must be placed in the RECORD
KEY data-name.

• For SEQUENTIAL access: The NEXT RECORD is not
required with sequential access: it is automatically ac
cessed.

3. Format two, Option one:

READ file-name RECORD [INTO data-name-1]

[INVALID KEY imperative-statement]

• For SEQUENTIAL access: The format will read the file
sequentially based on the specified index, or be defaulted
to the primary index. The INTO moves data into data-
name-1. INVALID KEY transfers control if any of the status
codes listed in Table C-4 are encountered.

• For DYNAMIC and RANDOM access: The formal will
retrieve data based on the value contained in data-name

(primary or secondary index). If the record is not found or.
any other error status is encountered, control is passed to
the INVALID KEY (refer to Table C-4). The INTO clause
moves data to data-name-1.

4. Format two. Option two:

READ file-name RECORD [INTO data-name-1]

[KEY IS data-name-2]

[INVALID KEY imperative-statement]

This format is used to perform keyed access, allowing the file to be
retrieved based on the RECORD KEY or ALTERNATE RECORD KEYS
(secondary indexes) via the KEY IS clause. Once this format is executed,
the Format one READ statement should be used. The index is used for
each READ until another secondary index is specified via the KEY IS
clause of a READ statement.

1 J a n u a r y 1 9 8 0 1 2 - 5 F D R 3 0 5 6

12 INDEXED SEQUENTIAL FILES

REWRITE

Format

REWRITE record-name [FROM data-name]

[INVALID KEY imperative-statement]

General rules
1. The REWRITE statement physically replaces an existing record.
2. The REWRITE statement can change any or all data-fields in the record

except the prime record key.
3. The file must be opened for 1-0 for all access methods.
4. A record must have been READ successully prior to the REWRITE. This

is required to lock the record and ensure that it cannot be updated by
another program running concurrently.

5. In the FROM data-name option, the primary RECORD KEY must equal
the key from the previous READ or the INVALID KEY conditions will
occur. The FROM option allows the record to be created in another area.
It is equivalent to MOVE data-name TO record-name prior to the
execution of the REWRITE statement.

6. Control is passed to the INVALID KEY statement if the primary key is
changed. If this statement is not present, control is then passed to the
USE DECLARATIVES. One or the other of these statements must be
present, or the program will terminate if the invalid statement is
activated. Refer to Table C-4 for status codes.

START

Format

GREATER THAN
START file-name [KEY IS [{ NOT LESS THAN }] data-name]

EQUAL TO

[INVALID KEY imperative-statement]

General rules
1. The START statement enables an indexed organized file to be positioned

for reading at a specified key value. This is permitted for files open in
either sequential or dynamic access modes. The START verb is not
allowed with the random access.

2. Option one:

START file-name.

This option positions the file to the value contained in the RECORD KEY
data-name. If that record is not present in the file, control is passed to the
DECLARATIVES section if present: otherwise, the program terminates.

FDR 3056 12-6 1 January 1980

INDEXED SEQUENTIAL FILES 12

r

~

3. Option two:

START file-name KEY IS data-name.

This option will position the file to the value contained in data-name
(data-name is the name of either RECORD KEY or one of the ALTER
NATE RECORD KEYs). If the record is not contained in the file, control
is passed to the DECLARATIVES section if present: otherwise, the
program terminates.

4. Option three:

GREATER THAN
START file-name [KEYJS [{ NOT LESS THAN }] data-name]

EQUAL TO

[INVALID KEY imperative-statement]

If the option GREATER or NOT LESS is specified, the file is positioned
for the next access to be greater than or less than the value specified in
the data-name.
The VALID clause or DECLARATIVES is taken if there is no data
satisfying data-name, and the STATUS code returned is 23.

5. START does not retrieve a record, but only positions to a desired record.
Consider the following short indexed file. Each record contains just two
fields: A NAME field which serves as primarv key. and a COMPANY
field:

I NAME | COMPANY I

Source coding relating to the file might be:

ENVIRONMENT DIVISION.

SELECT FILE-1 ASSIGN TO PFMS
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS NAME.

DATA DIVISION.
FILE SECTION.
FD FILE-1 LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID IS 'FILE-1'
01 FILE-1-RECORD.

05 NAME PIC X(10).
05 COMPANY PIC X(25).

1 J a n u a r y 1 9 8 0 1 2 - 7 F D R 3 0 5 6

12 INDEXED SEQUENTIAL FILES

Values:

A pictoral view of this file is presented below.

data-name NAME COMPANY
PICTURE

BLYE
CLAPP
GRIER
HARPER
KEANE

PIC X(10) PIC X(25)
REPORTCO
MERGANTHALER
AUTOMATION
DESIGNERS
REPORTCO

5. If a sequential traverse of this file is performed, records are returned in
sequence based on primary key:

BLYE REPORTCO
CLAPP MERGANTHALER
GRIER AUTOMATION
HARPER DESIGNERS
KEANE REPORTCO

To obtain specific records with a START statement, the key field
(NAME) has to be initialized.
If the intent is to obtain records of people whose name begins with the
characters F, G, H, and I, program actions should include the following
type of logic:

MOVE 'F' to NAME.

Place value in key field.

START FILE-1 KEY IS NOr LESS THAN NAME.

Find the first record whose key is not less than 'F'. This
positions the file to the records.

READ FILE-1 NEXT RECORD.

This action will retreive the desired record. In this
example it will be the record 'GRIER AUTOMATION'.

READ FILE-1 NEXT RECORD.

FDR 3056 12-8 1 January 1980

INDEXED SEQUENTIAL FILES 12

This action will retreive the next sequential record
'HARPER DESIGNERS'.

READ FILE-1 NEXT RECORD.

This action will retreive the next sequential record,
'KEANE REPORTCO'. Examination will indicate that
all desired records have been obtained.

WRITE

Format

WRITE record-name [FROM data-name-1]

[INVALID KEY Imperative-statement]

General rules
1. The WRITE function releases a logical record for an output or l-O file.
2. Prior to the WRITE statement, a valid, unique value must be in the

primary RECORD KEY data-name. If the FROM option is used, the
unique value in RECORD KEY data-name must be in the relative location
of data-name-1. If the primary key is not unique, the invalid statement or
the DECLARATIVE section will be executed. Refer to Table 18-1 for
error conditions.

1 January 1980 12-9 FDR 3056

Relative file processing

DEFINITION
Relative file organization is permitted only with disk storage devices. Records are stored
and retrieved based on a relative record number. For example, the 10th record is the one
addressed by relative record number 10 and is the 10th record area whether or not records
1 through 9 have been written.

▶ FILE CONTROL

Format

SELECT file-name ASSIGN TO PFMS

; ORGANIZATION IS RELATIVE

\ SEQUENTIAL [, RELATIVE KEY IS data-name-1] f
[; A C C E S S M O D E I S < \

/j^i..,, [, RELATIVE KEY IS data-name-1 \
^ (D Y N A M I C))

[; FILE STATUS IS data-name-2].

General rules

SELECT file-name
1. This clause specifies the name of the relative file. Refer to ENVIRO-

MENT DIVISION for rules.
ORGANIZATION IS RELATIVE

2. This clause pecifies that the file named in the SELECT statement
contains data organized by record number and processed by the File
Processing facility of the operating system.

SEQUENTIAL
[; ACCESS MODE IS { RANDOM

DYNAMIC

3. This clause specifies how a relative file is written or retrieved.
• SEQUENTIAL: If access mode is not specified, the access

mode will default to SEQUENTIAL. This access mode
specifies that records will be written or retrieved sequen
tially. A READ statement retrieves the records sequential-
ly-

1 January 1980 13-1 FDR 3056

13 RELATIVE FILE PROCESSING

• RANDOM: Specifies that the records are to be written or
retrieved randomly based on the value placed in the
RELATIVE KEY field prior to a READ or WRITE. When
RANDOM access is used, the complete RELATIVE KEY
value must be placed in RELATIVE KEY, or the record will
not be found. Random mode precludes a sequential READ
or WRITE.

• DYNAMIC: When this access method is specified, the
program can read or write randomly or sequentially.

RELATIVE KEY IS data-name-1

4. The RELATIVE KEY clause, whose value is the relative record number
of the record to be accessed, specifies the data item within Working-
Storage Section.

• Data-name-1 must not be defined in the Record Descrip
tion.

• Data-name-1 must not be specified with an OCCURS
clause, or be contained within a group affected by an
OCCURS clause.

• Data-name-1 must not be specified with a P character in its
PICTURE clause, or be described with a separator sign (/).

• Data-name-1 must be a valid numeric integer, and cannot
contain a value greater than 999,999.

• The value contained within data-name-1 must be unique;
duplicates are invalid.

The RELATIVE KEY is optional if access is sequential. However, in the
creation of the MIDAS template, a RELATIVE KEY size equal to the
maximum (48 bits), must be given.

[FILE STATUS IS data-name-2]
5. The FILE STATUS is a two-character (one word), unsigned field de

scribed in the Working-Storage Section. The operating system moves a
value into data-name-2 following the execution of every statement which
explicitly or implicitly references the file. This value indicates the
execution status of the statement o the program. Following a successful
READ or WRITE, etc., data-name-2 contains 00. For complete status_
codes, see Table C-4 in Appendix C.

PROCEDURE DIVISION
The COBOL statements listed in this section apply to relative file processing.
A complete description of all COBOL verbs, their functions, formats, and rules, is provided
in Section 8, PROCEDURE DIVISION.
The INVALID KEY clause may be written for relative files in the START, READ, WRITE,
REWRITE or DELETE statements. Its format is:

... [INVALID KEY Imperative-statement]

The INVALID KEY clause is executed if there is an error status code condition, in which
case control is transferred to imperative-statement. If this clause is not present, control is
passed to the DECLARATIVES section for the corresponding file. If neither is specified, the
program will abort during execution. The result for the INVALID condition is returned via
the ERROR STATUS code (see Table C-4).

F D R 3 0 5 6 1 3 - 2 1 J a n u a r y 1 9 8 0

RELATIVE FILE PROCESSING 13

CLOSE

Format

CLOSE file--name--1 [> flle--name - 2] . . .

^ General rule
This is the only option possible for a relative file.

DELETE

r
Format

DELETE file-name RECORD [; INVALID KEY imperative-statement]

General rules
1. The DELETE statement logically removes a data record from the relative

file.
2. In SEQUENTIAL access, the record to be deleted must have been

successfully read before a DELETE can be executed. The RELATIVE
KEY cannot be changed between the READ and DELETE statement,
otherwise the INVALID KEY clause will be activated.

3. RANDOM and DYNAMIC access modes only need to place the value of
the record to be deleted in the RELATIVE KEY field. If that record does
not exist in the file, the INVALID KEY statement is executed and the
ERROR STATUS field will contain a value of 23.

OPEN

Format

OPEN
U \
< INPUT >
I OUTPUT\

filename-1 [, file-name-2]

General rules
1. A file opened as INPUT can only be accessed in a READ statement.
2. A file opened as OUTPUT can only be accessed in a WRITE statement.
3. A file opened as l-O can be either read or written.

Note
Table C-5 in Appendix C specifies the types of OPEN
statements which are permissible with the different ACCESS
modes.

READ

Format one (SEQUENTIAL or DYNAMIC)

READ file-name [NEXT] RECORD [INTO data-name-1]

[AT END Imperative-statement]

1 January 1980 13-3 FDR 3056

13 RELATIVE FILE PROCESSING

Format two (SEQUENTIAL, RANDOM or DYNAMIC)
~ '

READ file-name RECORD [«NTO data-name-1]

[INVALID KEY imperative-statement]

▶ General rules
1. Format 1, Option 1 (SEQUENTIAL only):

READ file-name RECORD [INTO data-name-1]

[AT END imperative-statement]

For a sequential read, the file is read sequentially. If the INTO clause is
used, the data record is automatically moved into data-name-1. When AT
END is specified, control is passed to the imperative-statement when the
complete file has been read.

2. Format 1, Option 2 (DYNAMIC and SEQUENTIAL):

READ file-name [NEXT] RECORD [INTO data-name-1]

[AT END imperative-statement]

• For DYNAMIC access: This option allows the programmer
to change from a random mode to sequential reading with
the NEXT option. The INTO clause automatically moves
the data-record into data-name-1. The AT END clause
transfers control at the end of the file.

• If the NEXT option is not specified, the value of the record
to be retrieved must be placed in the RELATIVE KEY data-
name.

• For SEQUENTIAL access: The NEXT option is not re
quired.

3. Format 2, Option 1:

READ file-name RECORD [INTO data-name-1]

[INVALID KEY imperative-statement]

• For SEQUENTIAL access: The format reads the file se
quentially. The RELATIVE KEY is updated with the record
number after each successful READ. The INTO moves data
into data-name-1. The INVALID KEY transfers control if
any of the status codes listed in Table C-4 are encountered.

• For DYNAMIC and RANDOM access: This format re
trieves data based on the value contained in the RELATIVE
KEY. If the record is not found, or any other error status is
encountered, control is passed to the INVALID KEY clause.
Refer to Table C-4. The INTO clause moves data to data-
name-1.

F D R 3 0 5 6 1 3 - 4 1 J a n u a r y 1 9 8 0

RELATIVE FILE PROCESSING 13

REWRITE

Format

REWRITE record-name [FROM data-name]

[INVALID KEY Imperative-statement]

r

General rules
1. The REWRITE statement physically replaces an existing record.
2. The REWRITE statement can change any or all data-fields in the record.
3. The file must be opened for I/O for all access methods.
4. A record must have been READ successfully prior to the REWRITE

statement. This ensures that the record cannot be updated by another
program running concurrently.

5. The FROM data-name option allows the record to be created in another
area. It is equivalent to a MOVE data-name TO record-name prior to the
execution of the REWRITE statement.

6. Control is passed to the INVALID KEY statement if the RELATIVE KEY
is changed since the successful read. If this statement is not present,
control is then passed to the USE DECLARATIVES. One or the other of
these statements must be present. Refer to Table C-4 for status codes.

START

Format

GREATER THAN
START file-name [KEY IS [<J NOT LESS THAN \] data-name]

EQUAL TO

[INVALID KEY imperative-statement]

General rules
1. The START statement enables a relative file to be positioned for reading

at a specified key value. This is permitted for files open in either
sequential or dynamic access modes. The START verb is not allowed
with RANDOM access (see INVALID KEY).

2. Option 1:

START file-name
This option positions the file to the value contained in the data-name as
defined in RELATIVE KEY. If that record is not present in the file,
control is passed to the DECLARATIVES section if present; otherwise,
the program terminates.

3. Option 2:

START file-name KEY IS data-name

This option is synonymous to option 1 since there is only one key,
RELATIVE KEY, in a relative file.

1 January 1980 13-5 FDR 3056

13 RELATIVE FILE PROCESSING

4. Option 3:

GREATER THAN
START file-name [KEY IS [J NOT LESS THAN I] data-name]

EQUAL TO

[INVALID KEY Imperative-statement]

The option GREATER or NOT LESS is specified, the file is positioned for
the next access to be greater than or less than the value specified in the
data-name.
The INVALID clause or DECLARATIVES is taken if there is no data
satisfying data-name, and the STATUS code returned is a 23.

5. START does not retrieve a record, but only positions to a desired record.

WRITE

Format

WRITE record-name [FROM data-name-1]

rlNVALID KEY imperative-statement]

General rules
1. The WRITE statement releases a logical record to a file.
2. In the FROM option, data-name-1 and record-name cannot reference the

same memory location.
3. The file must be open for OUTPUT, or l-O.
4. The INVALID KEY clause must be specified if the DECLARATIVE

section is not applicable. The program will terminate if an error code
condition arises. Refer to Table C-4 for error codes.

5. For SEQUENTIAL access: If the file is opened as OUTPUT, the records
are placed in the file in sequential order. The first record would have a
position of 1, and the record number returned into the RELATIVE KEY
data-name would be 1, etc.

6. For DYNAMIC and RANDOM access: The value of the record number
must be placed in the RELATIVE KEY data-name.

FDR 3056 13-6 1 January 1980

APPENDICES

File organization

ACCESS METHODS

Sequential Access Method (SAM)
SAM files require that all entries in a file preceding a desired entry be accessed in order to
reach that entry. In other words, the file must be read sequentially. This is most useful for
files in which information is normally entered into the file sequentially and retrieved from
it in the same manner.

Direct Access Method (DAM)
DAM files (RELATIVE) permit access to a specific entry in a file by specification of physical
disk record number. This permits the user to locate an entry within a known position in the
file more quickly than does the SAM file structure. The size is restricted to 999,999 entries.

Indexed Sequential Access Method (INDEXED)
INDEXED method locates file entries through a key field search. The user may retrieve a
data entry with only a few disk accesses, regardless of the position of the entry in the file.
The primary index is based on the description of the record key. The key value is embedded
in the first data field in the record. The secondary indexes are referenced by alternate
record keys; up to five additional indexes may be specified. The user must show in advance
which index is to be used to locate a data entry.

1 J a n u a r y 1 9 8 0 A - 1 F D R 3 0 5 6

Creating ISAM and relative
files - the MIDAS template

To initiate an Indexed Sequential or Relative file, a user must run a conversational program
called CREATK to create a corresponding MIDAS template for the file. (For more information,
refer to the MIDAS User's Guide.)

Note
Do not use the shared COBOL library fVCOBLB.BIN) with a MIDAS library
(VKDALB.BIN) from a previous software revision.

19

Two sets of typical CREATK dialog, generated for INDEXED and DAM files, are shown below.
All user responses are rust-colored.

DIALOG FOR INDEXED FILE
Prompt
OK.
(CREATK rev 18.2)
MINIMUM OPTIONS?

FILENAME?

NEW FILE?
DIRECT ACCESS?
DATA SUBFILE QUESTIONS
PRIMARY KEY TYPE:

PRIMARY KEY SIZE =

Response
CREATK

YES

pathname

YES
NO

\i)B
B

w
number

Remarks

If minimum options is se
lected, all index level keys
will have the same length as
the full key for the last index
level. The primary key will
be stored with the data and
not in the index entries of the
secondary indexes. All index
blocks will default to a length
of 1040 words.
Enter the pathname of the
file to be created.
Creates a new file.

File will be indexed.

A specifies an ASCII key.
B specifies a binary key.
B number defines the number
of bytes for an ASCII key or
bits for a binary key.
W number defines the num
ber of words for A or B key.
For example, if there are 2
characters in the key. number
should be 16 bits, 2 bytes, or 1

18

19

1 Julv 1982 B-l FDR3056

B CREATING INDEXED AND DAM FILES

DATA SIZE number

SECONDARY INDEX

INDEX NO.? I number \
\ ICR1 J

DUPLICATE KEYS PERMITTED? YES
NO

KEY TYPE:

KEY SIZE =
{$)

B

W
number

word, depending on the key
type. The maximum key size
for an indexed file is 256 bits,
32 characters (bytes), or 16
words.

The number is the number
of words for a data record,
where number equals the re
cord length divided by 2 and
rounded.
This section is repeated for
each alternate record key.
The number is the number
of the alternate record key
(1 through 5). A carriage
return (CR) will exit from
CREATK, specifying no
alternate indexes.
YES allows the data in this
key field to be duplicated.
NO indicates that if the data
in the key field is duplicated,
the file will not be updated
and the INVALID KEY clause
or the DECLARATIVES sec
tion will be activated.
A specifies an ASCII key.
B specifies a binary key.
Enter the size of the alter
nate key, as explained for
the first key size entry above.

19 SECONDARY DATA SIZE
1 fCRl /

No data may be entered for
secondary keys. The re
sponse must be (CR) or 0
plus (CR). Either option will
return the user to the prompt
INDEX NO.?above.

FDR3056 B-2 1)uly 1982

CREATING INDEXED AND DAM FILES B

~

DIALOG FOR DAM FILE

Prompt
OK,
[CREATK rev 17.2]
MINIMUM OPTIONS?

Response
CREATK

YES

FILE NAME? [volume name>ufd passwd ldisk>] filename

NEW FILE? YES
DIRECT ACCESS? YES
DATA SUBFILE QUESTIONS
KEY TYPE:

I B
KEY SIZE = :

number
W

D A T A S I Z E = : n u m b e r
NUMBER OF ENTRIES TO ALLOCATE? number

r
INDEX NO.? (CR)

Remarks

If minimum options are
selected, all index level keys
will have the same length as
the full key for the last index
level. The primary key will
be stored with the data and
not in the index entries of the
secondary indices.

Same as the first dialog.

For a new relative file.

Enter the size of key; see the
first dialog. The maximum
key size for a relative file is
48 bits, six characters
(bytes), or three words. In
sequential mode, key must
always be specified at maxi
mum size.

Same as the first dialog.
Number is the number of
entries to allocate in the new
MIDAS. Entries are num
bered 1-n inclusive; any
reference outside this range
results in an error.
This concludes template
creation and returns to
command level.

Note
If an invalid response is entered by the user, the question (prompt) will be
repeated.

1 January 1980 B-3 FDR3056

Reference tables

WHAT IS IN THIS APPENDIX
The following tables are included in this appendix.

• COBOL Verb Index
• COBOL Reserved Words
• ASCII Character Set
• File Status Key Definitions
• Permissible Input/Output Statements
• Permissible Moves
• Numeric Conversion Tables

Table C-l. COBOL Verb Index
VERB CATEGORY SPECIAL

(Depending on Format) APPLICATIONS
ADD
COMPUTE
DIVIDE Arithmetic
MULTIPLY
SUBTRACT
COPY
ENTER Compiler Directing Inter-program Communication
USE
ADD
COMPUTE
DELETE File Handling
DIVIDE
IF (a)
MULTIPLY
READ Conditional File Handling
REWRITE File Handling
START File Handling
STRING
SUBTRACT
UNSTRING
USE File Handling
WRITE File Handling

INSPECT
MOVE Data Movement
STRING
UNSTRING
STOP Ending
ACCEPT Terminal Input
CLOSE File Handling
DELETE File Handling
DISPLAY Terminal Output
EXHIBIT Terminal Output

1 January 1980 C-l FDR 3056

REFERENCE TABLES

OPEN
READ
REWRITE
START
STOP
USE
WRITE
CALL

RELEASE
RETURN
SORT
ALTER
CALL
EXIT
EXIT PROGRAM
GOTO
PERFORM
SEARCH
SET
READY TRACE
RESET TRACE

Input-Output

Inter-program
Communicating

Ordering

Procedure Branching

Table Handling

TRACE MODE
Directing

File Handling
File Handling
File Handling
File Handling

File Handling
File Handling

Inter-program Communication

Inter-program Communication

Inter-program Communication

Debugging
Debugging

Note
(a)-IF is a verb in COBOL, although not a verb in the
grammatical sense in English.

Table C-2. COBOL Reserved Words

ACCEPT HIGH-VALUE REFERENCES
ACCESS HIGH-VALUES RELATIVE
ADD 1-0 RELEASE
ADVANCING I-O-CONTROL REMARKS *
AFTER ID* REMOVAL
ALL IDENTIFICATION RENAMES
ALPHABETIC IF REPLACINGALTER IN RERUN
ALTERNATE INDEX RESERVE
AND INDEXED RESET
ARE INITIAL RETURN
AREA INPUT RESTART-FILE *
AREAS INPUT-OUTPUT REVERSED
ASCII * INSPECT REWIND
ASSEMBLER * INSTALLATION REWRITE
ASSIGN INTO RIGHT
AT INVALID ROUNDED
AUTHOR IS RUN
BEFORE JUST SAME
BLANK JUSTIFIED SEARCH
BLOCK KEY SECTION
BY LABEL SECURITY
CALL LEADING SELECT
CHARACTER LEFT SENTENCE
CHARACTERS LENGTH SEPARATE
CLOSE LESS SEQUENTIAL

FDR 3050 C-2 1 January 1980

REFERENCE TABLES

COBOL LINE SET
CODE LINES SIGN
CODE-SET LINKAGE SIZE
COMMA LOCK SORT
COMP LOW-VALUE SOURCE-COMPUTER
COMP-3 * LOW-VALUES SPACE
COMPUTATIONAL MODE SPACES
COMPUTATIONAL-3 * MOVE SPECIAL-NAMES
COMPUTE MT9 * STANDARD
CONFIGURATION MULTIPLY START
CONSOLE * NAMED * STATUS
CONTAINS NATIVE STOP
COPY NEGATIVE STRING
CORR NEXT SUBSCHEMA *
CORRESPONDING NOT SUBTRACT
COUNT NUMBER SYNC
CURRENCY NUMERIC SYNCHRONIZED
DATA OBJECT-COMPUTER TABLE
DATE OCCURS TALLYING
DATE-COMPILED OF TAPE
DATE-WRITTEN OFF TERMINAL
DAY OFFLINE-PRINT * THAN
DECIMAL-POINT OMITTED THROUGH
DECLARATIVES ON THRU
DELETE OPEN TIME
DELIMITED OR TIMES
DELIMITER ORDS* TO
DEPENDING ORGANIZATION TRACE *
DISPLAY OUTPUT TRAILING
DIVIDE OVERFLOW UNCOMPRESSED *
DIVISION OWNER * UNIT
DOWN PAGE UNSTRING
DUPLICATES PERFORM UNTIL
DYNAMIC PFMS* UP
ELSE PIC UPON
END PICTURE USAGE
ENTER POINTER USE
ENVIRONMENT POSITION USING
EQUAL POSITIVE VALUE
ERROR PRINTER * VALUES
EVERY PROCEDURE VARYING
EXCEPTION PROCEDURES WHEN
EXHIBIT * PROCEED WITH
EXIT PROGRAM WORKING-STORAGE
EXTEND PROGRAM-ID WRITE
FD PUNCH * ZERO
FILE QUOTE ZEROES
FILE-CONTROL QUOTES ZEROS
FILE-ID * RANDOM
FILLER READ
FIRST READER *
FOR READY *
FROM RECORD
GIVING RECORDS
GO REDEFINES
GREATER REEL

1 January 1980 C-3 FDR 3056

REFERENCE TABLES

The Prime COBOL collating sequence conforms to the American Standard Code for
Information Interchange (ASCII) collating sequence. The octal value associated with each
character in the Prime computer is the basis for the sequence, where the characters are
arranged in ascending value from top to bottom

Table C-3. ASCII Character Set
PRIME REPRESENTATION

ASCII
Character Hexadecimal Octal Punched Cards

NUL (low value) 80 200
(space) AO 240 No punch

! (Exclamation) A l 241 12-8-2" (Quote) A2 242 7-8
(Number) A3 243 8-3
$ A4 244 11-3-8' (Apostrophe) A7 247 5-8
(A8 250 12-5-8
) A9 251 11-5-8
* A A 252 11-4-8
+ AB 253 12-6-8
, (Comma) AC 254 0-3-8
- (Minus) AD 255 11
. (Period) AE 256 12-3-8
/ (Virgule, slash, stroke) AF 257 0-1
0 (Zero) BO 260
1 B l 261
2 B2 262
3 B3 263
4 B4 264
5 B5 265
6 B6 266
7 B7 267
8 B8 270
9 B9 271
: (Colon) BA 272 8-2
; (Semicolon) BB 273 11-6-8
< BC 274 12-4-8

= BD 275 6-8
> BE 276 0-6-8

? BF 277 0-7-8
@ (at) CO 300 8-4
A C l 301 12-1
B C2 302 12-2
C C3 303 12-3
D C4 304 12-4
E C5 305 12-5
F C6 306 12-6
G C7 307 12-7
H C8 310 12-8
I C9 311 12-9
J CA 312 11-1
K CB 313 11-2

FDR 3056 C-4 1 January 1980

REFERENCE TABLES C

L CC 314 11-3
M CD 315 11-4
N CE 316 11-5
0 CF 317 11-6
P DO 320 11-7
Q DI 321 11-8
R D2 322 11-9
S D3 323 0-2
T D4 324 0-3
U D5 325 0-4
V D6 326 0-5
w D7 327 0-6
X D8 330 0-7
Y D9 331 0-8
Z DA 332 0-9

a El 341
b E2 342
c E3 343
d E4 344
e E5 345
f E6 346
g E7 347
h E8 350
i E9 351
j EA 352
k EB 353
1 EC 354
m ED 355
n EE 356
0 EF 357
P FO 360
q F l 361
r F2 362
s F3 363
t F4 364
u F5 365
V F6 366
w F7 367
X F8 370
y F9 371
z FA 372
0 (+zero) FB 373 12-0
0 (-zero) FD 375 11-0
DEL (High Value) FF 377

Note
Characters with no Punched Card code are not supported for punched
card entry.

1 September 1981 C-5 FDR3056

C REFERENCE TABLES

18
Table C-4. File Status Code Definitions

STATUS CODE ERROR TYPE

SEQUENTIAL FILES
0 0 N O N E
1 0 E N D O F F I L E

30 PERMANENT I/O
ERROR

34 PERMANENT I/O
ERROR

41 FORMS ERROR
RELATIVE FILES

00 NONE
10 END OF FILE
21 INVALID KEY

22 INVALID KEY

23 INVALID KEY

24
30

90

91

94

95

96

98

99

INVALID KEY
PERMANENT I/O
ERROR
PRIME-DEFINED

PRIME-DEFINED

PRIME-DEFINED

PRIME-DEFINED

PRIME-DEFINED

PRIME-DEFINED

PRIME-DEFINED

INTERPRETATION

Successful completion of operation.
End of file reached on READ; file pointer
positioned past logical end of file.
Hardware I/O error such as data check,
parity error, or transmission error.
Boundary violation: disk space full.

FORMS validation error on a READ.

Successful completion of operation.
End of file encountered during a READ.

Attempt to write beyond the boundaries
of the file allocated by CREATK.
Record already exists in data subfile; user
attempted to add a record with a non-
unique record number.
Record not found; no record found with
the specified key value.

Boundary violation: disk space full.
Hardware I/O error: could be a parity
error, data check or transmission error.
Locked record; attempt to access a record
already locked by another user or process.
Unlocked record; REWRITE attempted with
out first locking the record with a READ.
MIDAS concurrency error; another user
has deleted the record you were trying to
access.
User has supplied a record size for a
RELATIVE file that does not match the
record size assigned to the file during
template creation.
Relative record number error; user sup
plied a record number larger than the
number preallocated by CREATK.
Attempt to do an indexed add to a direct
access file.
System error; possibly serious. Verify
that error is not due to a START that en
countered a locked record before calling
your System Analyst.

FDR3056 C-6 1 September 1981

REFERENCE TABLES C

r

r

r

STATUS CODE ERROR TYPE INTERPRETATION
INDEXED FILES

00 NONE Successful completion of operation.
10 END OF FILE End of file reached on READ operation;

file pointer positioned past logical end of
file (highest key value).

22 INVALID KEY Attempt to perform a WRITE that would
create a duplicate primary key entry, or
changing the primary key on a rewrite.

23 INVALID KEY There is no record in the file with this key
value.

30 SYSTEM I/O Operation unsuccessful due to an I/O
ERROR error, such as a data check, parity error, or

transmission error..
90 PRIME-DEFINED Record already locked; anotheruseror pro

cess has already locked this record for
update.

91 PRIME-DEFINED Record not locked; a REWRITE operation
was attempted without first locking the
record via a READ operation.

92 PRIME-DEFINED Attempt to add a duplicate secondary key
value to a secondary index subfile that
does not permit duplicates.

93 PRIME-DEFINED The indexes referred to in the program do
not match those defined during MIDAS
template creation.

94 PRIME-DEFINED MIDAS concurrency error: another user
has just deleted the record you were trying
to access.

95 PRIME-DEFINED Bad record length supplied: the program
has incorrectly specified the record length
(data size) of the MIDAS file.

99 PRIME-DEFINED System error. Verify that the program is
not seriously flawed before you call your
System Analyst.

18

1 September 1981 C-6A FDR3056

REFERENCE TABLES C

r

*

Table C-5. Permissible Input/Output Statements-OPEN Statements vs. Access Modes

File File Access
OPEN Option in Effect

Procedure INPUT OUTPUT l-O EXTEND
Organization Mode Statement

READ
Sequential SEQUENTIAL WRITE

REWRITE
READ

WRITE
SEQUENTIAL REWRITE

START
DELETE

READ
Indexed

or
Relative

RANDOM
WRITE

REWRITE
START
DELETE
READ
WRITE

DYNAMIC REWRITE
START
DELETE

1 September 1981 C-7 FDR3056

C REFERENCE TABLES

Table C-6. Permissible Moves (X means allowed)
RECEIVING DATA ITEM

\ \ \ \\ *£%\ A *
\ V\ V\ % a\vA\

\ \ \%\\ \ A
SENDING
DATA
ITEM
ALPHABETIC
BINARY X(l)
ALPHANUMERIC EDITED X(3)
NUMERIC INTEGER X(2)
NUMERIC NON-INTEGER
NUMERIC EDITED X(3) X(3)
ALPHANUMERIC X(4)

Note
1. If the receiving operand length L is less than or equal to 18, a target

Picture of 9(L) is assumed. Otherwise, the MOVE is not allowed.
2. The source is converted lo DISPLAY form with separate trailing sign

(blank for positive), then moved as a character string source, subject to
truncation or blank padding depending on the receiving item's length.

3. The source is considered as a character string.
4. If the source length Lis less than or equal to 18, a source Picture of 9(L)

is assumed. Otherwise, the MOVE is not allowed.

FDR3056 C-8 1 September 1981

REFERENCE TABLES C

~

Table C-7. Hexadecimal and Decimal Ccinversion
HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4096 256 16
2 8192 512 32
3 12288 768 48
4 16384 1024 64
5 20480 1280 80
6 24576 1536 96
7 28672 1792 112
8 32768 2048 128

co 36864 2304 144
A 40960 2560 160 10

in
CO 45056 2816 176 11

C 49152 3072 192 12
D 53248 3328 208 13
E 57344 3584 224 14
F 61440 3840 240 15

163 162 161 16°

~

Table C-8. Octal and Decimal Convers ion

OCT DEC OCT DEC OCT DEC OCT DEC OCT DEC
0 0 0 0 0 0 0 0 0 0
1 4096 512 64
2 8192 1024 128 16
3 12288 1536 192 24

C O 4 16384 2048 256 32
h. 5 20480 2560 320 40

24576 3072 384 48
7 28672 3584 448 56
8* 83 82 81 8°

r
1 January 1980 C-9 FDR 3056

C REFERENCE TABLES

Table C-9. Hexadecimal Addition Table
0 1
1 2 10
2 3 10 11
3 4 10 11 12
4 5 10 11 12 13
5 6 10 11 12 13 14
6 7 10 11 12 13 14 15
7 8 10 11 12 13 14 15 16
8 9 10 11 12 13 14 15 16 17
9 A 10 11 12 13 14 15 16 17 18
A B 10 11 12 13 14 15 16 17 18 19
B C 10 11 12 13 14 15 16 17 18 19 1A
C D 10 11 12 13 14 15 16 17 18 19 1A I B
D E 10 11 12 13 14 15 16 17 18 19 1A IB I C
E F 10 11 12 13 14 15 16 17 18 19 1A I B I C I D
F 10 11 12 13 14 15 16 17 18 19 1A IB I C I D I E

Note
Al numbers in hexad ecimal.

FDR 3056 C-10 1 January 1980

COBOL symbols

~ -

COBOL SYMBOLS

r

r

PUNCTUATION SYMBOLS - Used to punctuate program entries.

period

comma

semicolon

quotation mark \
a p o s t r o p h e ?

1. Used to terminate entries. Usually required.
2. Used to signify the decimal in numeric literals.
1. Used to separate operands or clauses in a series. Usually optional
2. "European" notation for the decimal in numeric literals.
Used to separate operands or clauses in a series. Usually optional.

Used to enclose non-numeric literals.

CODING SYMBOLS - Campiler symbols.
* asterisk

/ virgule

- hyphen

Denotes an explanatory comment line when inserted in column 7 of a source
program line.
Denotes a skip to the top of a new page during a compiler listing. This
is coded in column 7 of a source program line.
Denotes a continuation-line for non-numeric literals when coded in column 7
of a source program line.

SIGN SYMBOLS/UNARY OPERATORS - Found in numeric literals and arithmetic formulas.

+ positive

- negative

1. Used as a sign character in the high-order (left-most) position of a
numeric literal.

2. As a unary operator, the effect of multiplication by numeric literal + 1
1. Used as a sign character in the high-order (left-most) position of a

numeric literal.
2. As a unary operator, the effect of multiplication by numeric literal - 1

i January 1980 D- l FDR3056

D COBOL SYMBOLS

COBOL SYMBOLS
ARITHMETIC SYMBOLS - Found in arithmetic formulas.
+ plus
- minus
* asterisk

/ virgule
= equal
() parenthesis

Addition.
Subtraction
Multiplication
Division
"Make equal to"
Used to enclose expressions to control the sequence in which they are performed.

CONDITION SYMBOLS - Used in conditional test expressions.
= equal

> greater than
< less than
() parenthesis

Denotes "is equal to".
Denotes "is greater than".
Denotes "is less than"
Used to enclose expressions to control the sequence in which conditions
are evaluated.

EDITED ITEM OR EDIT SYMBOLS - Used in edited item picture clauses
. decimal point

(insertion character)
, comma

(insertion character)
$ dollar sign

(floating character)

Used to insert an actual decimal in the indicated position of an edited item.

Used to insert a comma in the indicated position(s) of an edited item.
(May be used in conjunction with floating characters.)
Used to float an actual dollar sign (from left to right) in an edited item,
so that exactly one $ is developed immediately to the left of the most significant
nonzero digit in any position where the symbol has been used.

FDR3056 D-2 1 January 1980

COBOL SYMBOLS D

COBOL SYMBOLS

r

REPORT ITEM OR EDIT SYMBOLS (continued . ..)
= equal Used to insert an actual equal symbol in the indicated position of an edited item.

(insertion character)
/ virgule Used to insert an actual slash in the indicated position(s) of an edited item.

(insertion character)
* asterisk Used to replace leading zeros with an actual asterisk. Each * represents

(replacement character) a digit position in an edited item.
+ p l u s n 1. Used as a fixed sign control character in the low-order (right-most)
- minus or dash (fixed position of an edited item picture. The symbol does not replace a digit

sign control, or floating . position.
character) 2. Used to float an actual plus or minus character (from left to right)

* in an edited item, so that exactly one + or - is developed immediately
to the left of the most significant nonzero digit in any position where
the symbol has been used.

B letter B Used to insert blanks in the indicated position(s) of an edited item.
(insertion character)

0 ZERO Used to insert zero(s) in the indicated position(s) of an edited item.
(insertion character)

Z ZED Used to replace leading zero(s) with blank(s) in the indicated position(s)
(replacement of an edited item.
character)

CR credit Used as a fixed sign control character in the low-order (right-most)
(fixed sign control position of an edited item picture. It occupies 2 character positions in
character) the picture.

DB debit Used as a fixed sign control character in the low-order (right-most) position
(fixed sign control of an edited item picture. It occupies 2 character positions in the picture.
character)

P letter P Used to position the assumed decimal point away from the number; e.g., an item
(decimal scaling whose actual value is 25 will be treated as 25000 if its picture is 99PPPV.
character)

r

1 January 1980 D-3 FDR3056

Error messages

TYPES OF ERROR MESSAGES
This appendix contains the following categories of errors:

• COMPILE-TIME ERROR MESSAGES
• D-LEVEL ERROR MESSAGES
• COMPILE-TIME WARNING MESSAGES
• RUN-TIME ERROR MESSAGES

Error messages appear alphabetically within each category.

COMPILE-TIME ERROR MESSAGES

A ")" REQUIRED AFTER SUBSCRIPTS
The right parenthesis following a subscript has been omitted. Correct the coding and recompile.

▶ AREA-A VIOLATION; RESUMES AT NEXT PARAGRAPH/
SECTION/DIVISION/VERB.

Data before column 12 was ignored.

▶ BLANK WHEN ZERO IS DISALLOWED.
The BLANK WHEN ZERO clause is not permitted here. Use zero suppression or other editing
functions as indicated. Recompile.

▶ CONDITIONAL I/O STATEMENT DISALLOWED WITHIN "IF".

Implied conditional such as IF A=B READ FILE AT END is invalid.

▶ DATA DIVISION ASSUMED.
DATA DIVISION omitted in application program; insert DATA DIVISION and recompile.

▶ DELETE/START NOT VALID FOR THIS FILE.
See Table C-5, for permissible statements for each access mode. Correct and recompile.

▶ DISPLAY LIMITED TO 72 ON CONSOLE, 132 ON PRINTER.
Cannot display more than 72 characters on most terminals or print more than 132 characters
per line for print files.

▶ ERRONEOUS ASSIGNMENT.
ASSIGN TO device clause does not match FD; correct and recompile.

1 S e p t e m b e r 1 9 8 1 E - 1 F D R 3 0 5 6

E ERROR MESSAGES

▶ ERRONEOUS FILE-NAME.

SELECT file-name does not match FD file-name.

ERRONEOUS QUALIFICATION; LAST DECLARATION USED.
Data-name not unique, needs qualification to the group level.

▶ ERRONEOUS SELECT-SENTENCE; RESUMES AT NEXT SELECTOR
A R E A - A .

The flagged SELECT was ignored because the proper SELECT file-name, keyword ASSIGN, or
device-name was missing. Correct errors, recompile.

▶ ERRONEOUS SUBSCRIPTING; STATEMENT DELETED.
Refer to rules governing subscripting, Section 7, and subscripting OCCURS clause. Correct
errors, recompile.

▶ ERROR IN USING SORT, RELEASE, RETURN.
• SD has not been defined for the sort-file.
• Sort-file has no corresponding SELECT clause.
• Sort keys are not in SD description.
• RELEASE has not been used in the input procedure.
• RETURN has not been used in the output procedure.

▶ EXCESSIVE OCCURS NESTING IS IGNORED.

Only three levels of OCCURS clause are allowed.

▶ FD-VALUE IGNORED SINCE LABELS OMITTED.
VALUE OF FILE-ID or OWNER-ID specified without LABEL RECORDS ARE STANDARD.
Correct and recompile.

▶ FILE SECTION ASSUMED.

Missing FILE SECTION in DATA DIVISION. Insert and recompile.

▶ GROUP SIZE < 32,766; SET TO 1.

Group and/or record size exceeds maximum. Reduce to less than 32,766 bytes and recompile.

▶ ILLEGAL MOVE OR COMPARISON IS DELETED.
Check rules governing IF and MOVE statements. Correct errors, recompile.

▶ IMPROPER FILENAME IGNORED.
FD entry has no corresponding SELECT statement. Correct and recompile.

▶ IMPROPER OCCURS COUNT IGNORED.

OCCURS specification is greater than 32,767. Check rules for OCCURS clause: correct and
recompile.

▶ IMPROPER REDEFINITION IGNORED.
Check rules for REDEFINES clause. Correct errors; recompile.

F D R 3 0 5 6 E - 2 1 S e p t e m b e r 1 9 8 1

ERROR MESSAGES E

r

r

r

▶ INCOMPLETE/TOO LONG STATEMENT DELETED.

Check syntax; correct and recompile.

▶ INVALID BLOCKING IS IGNORED.

BLOCK CONTAINS clause exceeds maximum supported; correct and recompile.

▶ INVALID RECORD SIZE(S) IGNORED.

RECORD CONTAINS clause in error; correct and recompile.

▶ ITEM ASSUMED TO BE BINARY.

Elementary item with no PICTURE clause assumed binary. Check coding.

▶ KEY DECLARATION OF THIS FILE IS INCORRECT.

KEY IS clause in SELECT does not match FD description for indexed files, or Working-Storage
description for relative files.

▶ KEY MUST BE DECIMAL OR CHARACTER ITEM, MAX. 255 BYTES.
STATEMENT DELETED.

Key specification in error. Maximum is 255 bytes for indexed files, 6 bytes for relative files.
Correct and compile.

▶ LABEL RECORDS OMITTED ASSUMED FOR UNIT-RECORD FILE.

Check LABEL clause, change to LABEL RECORD OMITTED.

▶ LABELS ASSUMED FOR DISK FILE.
Check LABEL clause, change to LABEL RECORD STANDARD.

▶ LEVEL 01 ASSUMED.
A level number was omitted. Check previous statements; correct and recompile.

▶ MISORDERED/REDUNDANT SECTION PROCESSED AS IS.
Correct coding sequence; recompile.

▶ NAME OMITTED; ENTRY BYPASSED.

Unrecognizable data-name, not defined in Data Division. Correct and recompile.

▶ NON-UNIQUE SUBSCRIPT; LAST DECLARATION USED.

Non-unique data-name. Qualification is required; recompile.

▶ OCCURS DISALLOWED AT LEVEL 01.
Correct and recompile.

▶ PARAGRAPH DECLARATION REQUIRED HERE.
A paragraph-name is required as the first item in the Procedure Division; recompile.

▶ PERIOD ASSUMED AFTER PROCEDURE-NAME DEFINITION.
Period missing after a paragraph-name or a section-name. Correct and recompile.

1 S e p t e m b e r 1 9 8 1 E - 3 F D R 3 0 5 6

E ERROR MESSAGES

18

▶ PICTURE IGNORED FOR INDEX ITEM.
PICTURE disallowed on USAGE IS INDEX. Correct and recompile.

▶ RECORD MIN/MAX DISAGREES WITH RECORD CONTAINS; LATER
SIZES PREVAIL.

Either delete RECORD CONTAINS clause and use default, or use the proper record size.
Recompile.

▶ REDUNDANT CLAUSE IGNORED.
Remove and recompile.

[> REDUNDANT FD.

Non-unique file-name in the same program.

"SECTION" ASSUMED HERE.

Insert SECTION and recompile.

▶ SINGLE-SPACING ASSUMED DUE TO IMPROPER ADVANCING COUNT.
WRITE BEFORE/AFTER ADVANCING count is greater than 62. Correct and recompile.

▶ SOURCE BYPASSED UNTIL NEXT FD/SECTION.
This relates to previous error. Correct previous error(s), recompile.

▶ STATEMENT DELETED DUE TO ERRONEOUS SYNTAX.

Illegal, non-standard syntax; correct and recompile.

▶ STATEMENT DELETED DUE TO OMISSION OF RELATIONAL SYMBOL.
Correct and recompile.

▶ STATEMENT DELETED DUE TO NON-NUMERIC OPERAND.

Incompatible data types must be reconciled; recompile.

▶ STATEMENT DELETED; OPERAND IS NOT A FILE-NAME.

Illegal attempt to READ, WRITE, OPEN or CLOSE an undefined file. Correct syntax and
recompile.

▶ TERMINAL ERROR.
A required division head or section head was omitted, or the Procedure Division does not begin
with a paragraph-name.

▶ UNIT-RECORD FILE BLOCKING IS IGNORED.
Device and BLOCK CONTAINS clause are incompatible.

▶ UNRECOGNIZABLE ELEMENT IS IGNORED.
Correct and recompile.

FDR3056 E-4 1 September 1981

ERROR MESSAGES E

r

r

▶ UNRESOLVED PROCEDURE-NAME; STATEMENT DELETED.

Illegal attempt to GO TO an undefined procedure-name. Corect and recompile.

USING-LIST LEVELS MUST BE 01/77.

Using-lists in subprograms must begin on 01 or 77 level to be forced on word boundaries.
Correct and recompile.

▶ VALUE CLAUSE IGNORED.
Delete and recompile.

▶ VALUE DELETED DUE TO TYPE CONFLICT.
PICTURE and VALUE disagree in size. Correct and recompile.

▶ VALUE DISALLOWED DUE TO OCCURS/REDEFINES.
Remove VALUE clause and recompile.

▶ VALUE DISALLOWED IN FILE/LINKAGE SECTION.
Remove VALUE clause and recompile.

▶ VARYING ITEM MAY NOT BE SUBSCRIPTED.
Correct and recompile.

D-LEVEL ERROR MESSAGES

^ CONDITIONAL I/O STATEMENT DISALLOWED WITHIN IF.
A clause such as AT END, SIZE ERROR, INVALID KEY, or IF is not allowed within an IF
statement.

▶ ERRONEOUS F ILENAME.
A filename in the Procedure Division is not found in an FD description in the Data Division.

▶ KEY NOT DESCRIBED WITHIN FD.
The primary or alternate record key of an indexed file is not described within the FILE
SECTION data record.

▶ UNRESOLVED PROCEDURE-NAME.
GOTO or PERFORM uses a procedure-name not found elsewhere in the Procedure Division.

▶ USING LEVELS MUST BE 01 or 77.
In a CALL statement or in the PROCEDURE header, operands of the USING clause must be
defined in the Data Division with level 01 or 77.

COMPILE-TIME WARNING MESSAGES

^ "COMP" IGNORED FOR DECIMAL ITEM.
COMP has been specified, although the item appears to be decimal; the compiler is ignoring the
COMP designation. Results may be incorrect. Determine the correct specification and
recompile.

18

1 September 1981 E-5 FDR 3056

E ERROR MESSAGES

▶ DATA RECORDS CLAUSE WAS INACCURATE.
The DATA RECORDS clause does not agree with record description entries for the file. Correct
and recompile.

▶ DISPLAY TRUNCATED TO 72 CHARACTERS.

No more than 72 characters can be displayed on the terminal.

▶ FILE NEVER CLOSED.
Include a CLOSE statement for the file, recompile.

▶ FILE NEVER OPENED.
Include an OPEN statement for the file, recompile.

▶ INCONSISTENT READ USAGE.

OPEN statement and USAGE do not agree. Illegal attempt to write to an input file.

▶ INCONSISTENT WRITE USAGE.
OPEN statement and USAGE do not agree. Illegal attempt to read an output file.

▶ ITEM IS UNSIGNED.
The item in this statement is unsigned, but appears to require sign designation. Results may be
indeterminate.

▶ LITERAL TRUNCATED TO ITEM SIZE.
• VALUE OF FILE-ID has been specified by a literal greater than 8 characters.
• OWNER IS has been specified by a literal greater than 6 characters.
• The size of the literal in a VALUE clause is greater than the size defined in the

PICTURE clause.

▶ MOVE IS DONE WITHOUT CONVERSION.
Data representation does not agree. Conversion will not occur; results are indeterminate.

▶ NO CORRESPONDENCE FOUND.
Check rules for MOVE CORRESPONDING. Correct and recompile.

▶ PERIOD ASSUMED ABOVE.
Statement syntax suggests a period; one has been generated by the compiler.

FDR 3050 E-6 1 September 1981

ERROR MESSAGES E

r

r

-

RUNTIME ERROR MESSAGES
The general format for run-time I/O errors generated by a COBOL program is:

message
FILE-ID: file-id OWNER-ID: owner-id DEVICE: device-name
FATAL RUN-TIME 1-0 ERROR (C$ER)
ER!

The diagnosticmessage is one line which briefly describes the probable cause of the error. Most
of the time the message will point directly to the problem. A list of diagnostics and further
explanations is provided below.
The next line identifies the file on which the error occurred. Information printed includes file-id
and owner-id, if specified, and device-name specified in SELECT clause.
If the error was caused by an indexed or relative I/O operation that involved a call to the MIDAS
system, the message line will be:

MIDAS FILE SYSTEM ERROR nnnn, FILE STATUS CODE yy

The variable n represents the error code returned from MIDAS, which is listed in The MIDAS
User's Guide. The variable yy is the COBOL file status code, as defined in Appendix A.
A list of the COBOL runtime I/O error messages follows:

▶ ATTEMPTED DELETE FROM UNOPENED FILE.
The user attempted to delete a record from an unopened file.

▶ ATTEMPTED READ FROM ILLEGAL DEVICE.

The user attempted to read a record from the printer.

▶ ATTEMPTED READ FROM UNOPENED FILE.

The user attempted to read a record from an unopened or a write-only file.

▶ ATTEMPTED REWRITE TO NON-DISK FILE.
The user attempted to rewrite a record to a non-disk file (a file not assigned to Prime File
Management System].

▶ ATTEMPTED REWRITE TO UNOPENED FILE.
The user has attempted to rewrite a record to an input-only or an unopened file.

▶ ATTEMPTED START ON UNOPENED FILE.
The user program executed a START statement on an unopened file.

▶ ATTEMPTED WRITE TO UNOPENED FILE.
The user attempted to write a record to an unopened or a read-only file.

1 September 1981 E-6 A FDR3056

ERROR MESSAGES E

▶ END OF FILE ENCOUNTERED
An EOF mark was encountered on a sequential READ statement.

▶ ERROR ADDING SECONDARY INDEX, UNABLE TO DELETE PRIMARY
An error occurred adding a secondary index to an index file on a WRITE statement. When
the error was noticed by the COBOL run-time package, an attempt was made to remove the
primary index entry which failed. This error is always fatal and may indicate a problem
with the MIDAS file structure or the COBOL run-time package.

▶ ERROR PROCESSING DELETE STATEMENT
An error occurred attempting to delete a record from an indexed or a relative file.

▶ ERROR PROCESSING START STATEMENT
An unexpected error occured while executing a START statement on an indexed or relative

r fi l e .▶ ERROR UNLOCKING RECORD
A MIDAS error occurred (from UPDATS) in an attempt to unlock a record.

▶ FILE READ ERROR
General message indicating a sequential file read error.

▶ FILE REWRITE ERROR
General message indicating a sequential file re-write error.

▶ FILE WRITE ERROR
General message indicating a sequential file write error.

▶ NO READ PRIOR TO DELETE
A READ statement must be executed prior to a DELETE on an indexed or relative file in
sequential access mode.

▶ NO READ PRIOR TO REWRITE
A READ statement must be executed prior to a REWRITE when an indexed or relative file
is used in sequential access mode.

▶ NO UNITS AVAILABLE
All available file units are in use. Note that units 13-16 are reserved for use by MIDAS and
FORMS.

▶ REDUNDANT OPEN ATTEMPTED
The program tried to open a file which was already open.

▶ SEQUENTIAL WRITE TO RANDOM FILE OPENED IN I/O MODE
Attempt to use the sequential WRITE statement on a file opened in I/O mode for random
access is not permitted.

1 J a n u a r y 1 9 8 0 E - 7 F D R 3 0 5 6

v .

Expanded listing

EXPANDED LISTING
In 64V mode (Prime 350 and up), COBOL can optionally generate an expanded listing
following the errors and warnings section in the listing file. The expanded listing is fairly
'PMA-like', easily readable, and is obtained bv employing the mnemonic parameter
-EXPLIST.
Example:

COBOL prograrrr-name -EXPLIST

For the expanded listing, instead of using source code identifiers. Prime COBOL uses
machine-generated labels in the listing. The general format of these labels is:

< TYPE > $XXXX[±N character offset]
where

XXXX is the hexadecimal identifier.
TYPE is the label type.

Label types fall into the following category:
A Paragraph or section
B Alter or perform indirect word
C Perform count variable
D Decimal constant
E Picture string (const)
F Character string (const)
G Generate label for branch instruction
H Passed parameter
S Generate label - any usage allowed
Y File control block
Z File buffer

A description of these labels is shown below:
A$XXXX - Paragraph or section label

Will appear in expanded code associated with the previous source line.
Note

When TRACE MODE is used, code will exist to accomplish
paragraph and section name displays.

B$XXXX - Alter or perform indirect
Will be used to key a return for a PERFORM statement. If when
examined, the variable contains some non-zero value, a branch to that
non-zero location is performed.

C$XXXX - Perform count variable
Used to contain value for perform loop.

1 J a n u a r y 1 9 8 0 F - l F D R 3 0 5 6

F EXPANDED LISTING

Note
Stored as single precision integer for maximum value of
32767.

D$XXXX - Decimal constant
1. Item is placed in literal pool for explicit numeric constant references.
2. Item is placed in literal pool for implicit numeric constant references.

• Condition names with value associated with numeric cons
tant.

Note
All numeric constants in literal pool are examined prior to
the addition of a new numeric constant. This prevents dupli
cates.

E$XXXX - Edit picture string
This item is generated for use with edit capability on data strings.
Insertion characters, zero suppression, etc., are represented by this
string.

F$XXXX - Character string constant
1. All explicit character string constants are placed in literal pool.
2. All implicit character string constants:

• Condition names may generate a reference to a character
constant.

• An EXHIBIT Statement.
• Entering a new paragraph with TRACE MODE set.

G$XXXX - Generated label for branch
Produced by IF Statements to bypass code based on conditions results.

H$XXXX - Passed parameter
Produced for each item in Linkage Section.

S$XXXX - Generated label - no specific reason
Produced for branching code associated with a READY TRACE.

Y$XXXX - File control block
Each defined file will generate an FCB.

Z$XXXX - File buffer
1. Each FCB will reference a file buffer area.
2. Size of file buffer may contain room for alternate buffers.

Other labels used are:
SB% Stack base relative - used for temporary storage.
XB% Temporary base relative - used for Linkage Section address.
WRKST$ Working-Storage
WSEXT$ Working-Storage extension, etc. under index, tallying and work

area as needed by the compiler.
Example:

§ 0 0 3 2 3 3 : 0 0 1 3 1 0 E A FA 1 , Z $ 0 0 2 7 + 7 2 C
§003232:001000.000725L

FDR 3056 P _ 2 1 J a n u a r y 1 9 8 0

EXPANDED LISTING F

The example above says: At relative location "3233 in the procedure area, EAFA 1 file buffer
(ID=$0027 with a +72 character offset). Note that the word offset is 725 in the link frame.
An expanded listing example is presented below. It represents a portion of an actual listing
tor SAMPLE presented in Section 4.
For additional information pertaining to expanded code and the Program Statistics which
follows it. see The Assembly Language Programmer's Guide and Section 2 of this manual
respectively.
Example:

OK, COBOL SAMPLE -L TTY -EXPLIST

i l)
(0002)

ID DIVISION.
PROGRAM-ID. SAMPLE.

~

(0056)
(0057)
(0058)
(0059)
(0060)
(0061)
(0062)

BEGIN SECTION.
CREATE-FILE.

OPEN INPUT CARD-FILE.
OPEN OUTPUT PRINT-FILE, DIRECTORY-FILE.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE

READ-NEXT.
READ CARD-FILE AT END GO TO LIST-DIRECTORY.

(0076)
(0077)
(0078)
(0079)
(0080)
(0081)
(0082)
(0083)
(0084)
(0085)
(0086)

DISPLAY 'END TEST SEQUENTIAL READ AFTER A START'.
STOP RUN.

LIST.
WRITE PRINT-LINE FROM HEADER AFTER ADVANCING PAGE.

READ-NEXT-DIRECTORY-RECORD.
READ DIRECTORY-FILE NEXT RECORD AT END GO TO LIST-DONE,
MOVE DIRECTORY-RECORD TO PRINT-LINE.
WRITE PRINT-LINE.
GO TO READ-NEXT-DIRECTORY-RECORD.

LIST-DONE.
EXIT.

E X P A N D E D

000001
000003
000004
000006
000007
000011
000012
000014

L I S T I N G
001300

001000.001413L
001320

001000.000433L
001300

001000.001412L
001320

001000.000476L
061432.000376L

F O R — S A M P L E
EAFA 0,WRKST$+2C

STFA 0,Y$002B+20C

EAFA 0,WRKST$

STFA 0,Y$002B+90C

PCL =C$IN
A$0001 EQU *
A$0002 EQU *

1 January 1980 F-3 FDR 3056

F EXPANDED LISTING

* SOURCE LINE 58
000016: 061432.000374L A$0006 PCL =C$OS ,*
000020: 001100.000650L AP Y$0013,S
000022: 000100.000000F AP = ' i ,s
000024: 000300.000000F AP F$80E2,SL

* SOURCE LINE 59
000026: 061432.000374L PCL =C$OS ,*
000030: 001100.001076L AP Y$0001,S
000032: 000100.000000F AP = '2,S
000034: 000300.000025F AP F$80E2,SL
000036 : 02 .000000F LDA = '0
0 0 0 0 3 7 : 0 4 .0 0 0 4 6 7 L STA Y$002B+76C
000040: 061432.000372L PCL =C$OR ,*
000042: 001100.000421L AP Y$002B,S
000044: 000300.000033F AP ='2,SL

* SOURCE LINE 60
0 0 0 0 4 6 : 0 0 1 3 0 0 EAFA 0,WRKST$+4C
000047: 001000.001414L
0 0 0 0 5 1 : 0 0 1 3 1 0 EAFA 1,Z$0001
000052: 001000.001204L
000054: 001313.000204A LFLI 1,132
000056: 001303.000106A LFLI 0,70
0 0 0 0 6 0 : 0 0 1 1 1 4 ZMV
000061: 061432.000370L PCL =C$WS ,*
000063: 001100.001076L AP Y$0001,S
000065: 000100.000000F AP S$0000,S
000067: 000100.000000F AP ='102,S
000071: 000300.000000F AP ='40000,SL

S$0000 EQU* SOURCE LINE 62
000073: 061432.000366L A$000Di PCL =C$RS ,*
000075: 001100.000650L AP Y$0013,S
000077: 000100.000000F AP S$0002,S
000101: 000300.000000F AP S$0001,SL
000103 : 01 .000000F S$0001 JMP G$0014
000104 : 01 .000000F S$0002 JMP A$0013

* SOURCE LINE 77
000233:

* SOURCE LINE 79
000235:
000236:
000240:
000241:
000243:
000245:
000247:
000250:
000252:
000254:
000256:
000260:

061432.000354L

001300
001000.001414L

001310
001000.001204L
001313.000204A
001303.000106A

001114
061432.000370L
001100.001076L
000100.000000F
000100.000140F
000300.000072F

A$0028

S$0009

PCL =EXIT ,*

EAFA 0,WRKST$+4C

EAFA 1,Z$0001

LFLI 1,132
LFLI 0,70
ZMV
PCL =C$WS ,*
AP Y$0001,S
AP S$0009,S
AP ='102,S
AP ='40000,SL
EQU

FDR 3056 F-4 1 January 1980

EXPANDED LISTING F

* SOURCE LINE 81
000262: 061432.000352L A$002B PCL =C$RR ,*
000264: 001100.000421L AP Y$002B,S
000266: 000100.000210F AP -■1 , 8
000270: 000100.000000F AP S$000B,S
000272: 000300.000000F AP S$000A,SL
0 0 0 2 7 4 : 0 1 . 0 0 0 0 0 0 F S$000A JMP G$0016
0 0 0 2 7 5 : 0 1 . 0 0 0 0 0 0 F S$000B JMP A$0039* SOURCE LINE 82
0 0 0 2 7 6 : 0 0 1 3 0 0 G$0016 EAFA 0,Z$002B
000277: 001000.000527L
0 0 0 3 0 1 : 0 0 1 3 1 0 EAFA 1,Z$0001
000302: 001000.001204L
000304: 001313.000204A LFLI 1,132
000306: 001303.000120A LFLI 0,80
0 0 0 3 1 0 : 3 0 1 1 1 4 ZMV* SOURCE LINE 83
000311: 061432.000370L PCL =c$ws ,*
000313: 001100.001076L AP Y$0001,S
000315: 000100.000000F AP S$000C,S
000317: 000100.000257F AP ='102,S
000321: 000300.000142F AP ='20001,SL* SOURCE LINE 84
0 0 B 3 2 3 : 0 1 . 0 0 0 2 6 2 S$000C JMP A$002B

* SOURCE LINE 86
000324 140040 A$0039 CRA
000325 13.000400L IMA B$0039
000326 100040 SZE
000327 41.000001A JMP# 1,*
000330 061432.000354L PCL =EXIT ,*
000332 000046

000343:
000344:

305.316
304.240

F$8138

000352> 000000.000000E IP C$RR
000354> 000000.000000E IP EXIT
000356> 000000.000000E IP C$CR

000400> 000000 B$0039
000401> SAMPLE ECB 0 , ' 3 5 2 , ' 1 2 , 0 ,
001410> WSEXT$ EQU
001412> WRKST$ EQU
000421> 142255 Y$002B OCT 142255
000422> 143311 OCT 143311

1 January 1980 F-5 FDR 3056

F EXPANDED LISTING

000473>
000474>

OCT
OCT

000501>
000527>
000650>
000651>
000652>

004005

144716
142301
152301

OCT
Z$002B DATA
Y$0013 OCT

OCT
OCT

4005
81(* ')
144716
142301
152301

000654> 000000
«

OCT

000756>
001076>
001077>

000007
000007

Z$0013 DATA
Y$0001 OCT

OCT

3 0 (' ')
7
7

001160>
001161>
001204>

P R O G R A M

300000 OCT 0
OCT 0

Z$0001 DATA 132(

S T A T I S T I C S

Executable Code Size: 218 Words.
Constant Pool Size: 49 Words.
Total Pure Procedure Size: 267 Words.

Working-Storage Size: 74 Bytes.
Tbtal Linkframe Size: 581 Words.

Stack Size: 51 Words.

Trace Mode: Off.

No Arguments Expected.

86 Source Lines.

No Errors, No Warnings, Prime V-Mode COBOL, Rev 17.2 <SAMPLE>

FDR 3056 F-6 1 January 1980

LABEL command

OVERVIEW OF LABEL
PRIMOS has an utility called LABEL which initializes magnetic tapes. LABEL writes either
IBM (9-track EBCDIC or 7-track BCD) or ANSI (9-track ASCII) level 1 volume labels
followed by dummy HDRl and EOFl labels. LABEL can also be used to read existing VOLl
and HDRl labels.
ANSI labels are written in accordance with the American National Standards Institute
standard ANSI X3.27-1978. IBM labels are written in accordance with IBM's specifications
(IBM manual GC28-6680-5).
Any non-standard labels such as 7-track ASCII or user-defined labels cannot be read or
written.

r

USING LABEL
To read existing labels type the command:

LABEL MTn [-TYPE type]
To write labels type the command:

LABEL MTn [-TYPE type] -VOLID vol [-OWNER own] [-ACCESS ace] [-INIT]
The arguments have the following meanings:

MTn is the tape drive where the tape to be labeled is located, n is a number
between 0 and 7. This keyword is required and must be the first on the
command line.

type is the type of label desired:
-TYPE A 9-track ASCII (ANSI) (Default)
-TYPE B 7-track BCD (IBM)
-TYPE E 9-track EBCDIC (IBM)

vol is a 1-6 character string which uniquely identifies this tape reel. If less
than 6 characters are specified, they are blank-padded on the right. The
keywords "-VOLUME'" or "VOL" may be substituted for the keyword "-
VOLID".

own is 1-14 characters long for ANSI labels. 1-10 characters long for IBM
labels. If less than 14 (or 10) characters is specified, they are blank-
padded on the right. If this keyword is omitted, the default is the user's
login name. The keyword "-OWN" may be substituted for the keyword
"-OWNER".

ace is a single character defining access to this tape. ACCESS is not used by
Prime software but is included for completeness. If it is omitted, it is left
blank on ANSI labels. ACCESS is ignored for IBM labels.

INIT is necessary if the tape is brand new.

1 January 1.980 G - l FDR 3056

LABEL COMMAND

On read operations, LABEL prints out the volumne and owner ids, creation date, access
(ANSI tapes only), and other information.
If LABEL successfully writes a label, the message "TAPE LABEL WAS WRITTEN SUC
CESSFULLY" is displayed.

ERRORS USING LABEL
Improper use of the LABEL command causes an error message to be printed. These errors
are the result of bad syntax in the LABEL command itself or a system magnetic tape I/O
error.

Syntax errors
i ***DUPLICATE KEYWORD DETECTED

The same keyword was typed more than once.

t * * * I N V A L I D T A P E U N I T S P E C I F I E D ^
Something other than MT0-MT7 was typed.

▶ ***VOLUME ID SPECIFIED IS TOO LONG
The volume id cannot be longer than 6 characters.

i > ***OWNER ID SPECIFIED IS TOO LONG

The owner id cannot be longer than 14 characters.

[> ***INVALID LABEL TYPE SPECIFIED
Label type must be one of the characters "A", "E", or "B"

▶ ***NO MAGNETIC TAPE UNIT SPECIFIED
A magnetic tape unit is required.

▶ ***VOLUME ID WAS NOT SPECIFIED
When writing labels, a volume id is required.

j ***OWNER ID SPECIFIED IS TOO LONG FOR TYPES B OR E
The owner id for IBM labels cannot be longer than 10 characters.

***UNABLE TO WRITE TAPE LABEL ON THIS TAPE
A magnetic tape write error occurred and the label was not written.

▶ ***UNABLE TO READ TAPE LABEL ON THIS TAPE
A mag tape read error occurred and the label was not read.

***VOLl LABEL ALREADY EXISTS
ANSI standards prohibit the re-writing of VOLl labels.

! ***LABEL READ WAS NOT TYPE x
The label read was not of the type specified.

▶ ***LABEL OPERATION ABORTED
Any one of the prededing four errors aborts.

FDR 3056 Q _ 2 1 J a n u a r y 1 9 8 0

LABEL COMMAND G

r

r

***ACCESS IGNORED FOR IBM LABELS (WARNING ONLY)
This is a warning only - processing continues.

* * * îUNRECOGNIZED KEYWORD, string (CMDL$A)
An invalid keyword (string) appeared on the command line.

System errors
MTn NOT ASSIGNED

SUBR EOF
SUBR EOT
SUBR MTNO
SUBR PERR
SUBR HERR
SUBR BADC

Tape drive must be ASSIGNed before using
LABEL
END-OF-FILE on the magnetic tape
END-OF-TAPE
Tape drive is not operational
Parity error on the tape drive
Tape drive hardware error
LABEL improperly called mag tape subroutines

In the above errors, SUBR is the name of the magnetic tape subroutine that reported the
error. See the PRIMOS Subroutines Reference Guide for more information regarding these
errors.

HELP FACILITY
The command LABEL -HELP causes LABEL to print out an abbreviated description of the
command on the terminal.
For a complete description of tape labels and their use, refer to the IBM publication
GC28-6680, OS TAPE LABELS and the ANSI publication X3.27-1969, "American National
Standard Magnetic Tape Labels for Information Interchange".

1 January 1980 G-3 FDR 3056

COBOL system files

SYSTEM FILES
To utilize COBOL, the following files must be available on the system in the UFD's specified:

U F D F I L E - N A M E

CMDNCO COBOL.SAVE (shared COBOL compiler)
NCOBOL.SAVE (non-shared COBOL compilei

SYSOVL C$$COD (code generator)
LIB NVCOBLB.BIN (non-shared library)

VCOBLB.BIN (shared library)
PFTNLB.BIN (pure FORTRAN library)
IFTNLB.BIN (impure FORTRAN library)

SYSTEM C02016 (shared compiler segment)
C2014A (shared library segment)
C2014B (shared library segment)

19

VCOBLB Library
The VCOBLB library contains the following common COBOL subroutines.

r

C$ADAT
CSADAY
CSATIM

CSCA
CSINSP
C$UNS1/C$UNS2
C$STR1/C$STR2/
CSSTR3
CIN/CIN1/
CSIN2
CSOS
C$CS
CSRS
C$UN
csxs
csws
CSOI/C$OR
CSCI/C$CR
CRI/CRR
CWI/CWR

Returns current date in format YYMMDD
Returns Julian date in format YYDDD
Returns current time in format HHMMSSFF
H = Hour
M = Minutes
S = Seconds
F = Hundredths of seconds
Close opened files
INSPECT statement
UNSTRING statement
STRING statement

File assignment initialization

Open sequential file
Close sequential file
Read sequential file
Unlock an indexed or relative file entry
Rewrite sequential file
Write sequential file
Open indexed/relative file
Close indexed/relative file
Read indexed/relative file
Write indexed/relative file

l lulv 1982 H - l FDR3056

H COBOL SYSTEM FILES

19

CXI/CXR
CSI/CSR
C$DI/CSDR
C$NCLT
C$KE
C$ER
C$ER1
CSPRTN

Rewrite indexed/relative file
Start indexed/relative file
Delete indexed/relative file
Numeric class text
Error processing
Error processing
Error processing
Call COBOL subprograms, non-shared library only

DM 30.™ 11-2 l July 1982

r Symbols

"

U (SEG prompt) 3-1
$ (SEG prompt) 3-1
-64V (compiler option) 2-5
. .. (format notation) xi, 4-5
< (format notation) 4-5
= (format notation) 4-5
> (format notation) 4-5
[] (format notation) xi, 4-5
{) (format notation) xi, 4-5

A

r

Abbreviated combined relation
conditions 4-23

ACCEPT statement 8-4
Access methods, file A-1
ACCESS MODE clause: 6-1, 6-4,

definition 6-1, 6-4, 6-5, 6-6
indexed files 12-1
relative files 13-1

Access modes vs. OPEN state
ments C-7

ADD statement 8-6
Addition table, hexadecimal C-10
Addressing mode, compiler 2-5
AFTER ADVANCING option 8-49
AFTER clause, PERFORM 8-25
Algebraic signs 4-16
Alignment rules, standard 4-15
ALL, figurative constant 4-9
Alphabetic item, category 4-14
Alphabetic PICTURE clause,

rules 7-16
ALPHABETIC test 4-21
Alphanumeric edited item,

category 4-15
Alphanumeric edited PICTURE

clause, rules 7-16
Alphanumeric item, category 4-15
Alphanumeric PICTURE clause,

rules 7-16
ALTER statement 8-7
ALTERNATE RECORD KEY

clause 6-5. 12-1
American National Standard,

(ANSI) 1-2
ANSI standards, coding rules

4-6
Area A 4-6
Area B 4-6
Arithmetic expressions:

definition 4-18
rules 4-18
symbol combinations, table

4-18
Arithmetic operations 4-10
Arithmetic operators 4-18
Arithmetic statements:

definition 8-2
features 4-19
rules 8-3

Arithmetic symbols, COBOL
D- l

ASCII character set C-4
ASCII IS NATIVE clause 6-1, 6-3
ASSIGN TO clause 6-1, 6-4. 6-5

indexed sequential files 12-1
relative files 13-1

AT END clause:
READ 8-32, 12-4, 12-5, 13-3.

13-4
RETURN 8-35, 11-2
SEARCH 8-36, 10-9

Audience 1-1
AUTHOR, paragraph 5-1

Batch job environment 1-5
BEFORE ADVANCING option

8-49
BINARY (filename option) 2-5
BINARY (compiler option) 2-5
Binary arithmetic operators 4-18
Binary file, compiler 2-5
Binary item 4-15
BLANK WHEN ZERO clause 7-8,

7-25
examples 7-26

BLOCK CONTAINS clause 7-3,
7-4

Brackets xi, 4-5
Braces, xi, 4-5
BY option:

DIVIDE 8-13
MULTIPLY 8-23

CSIN:
error messages 3-4
execution utility program 3-2

CALL statement 8-8, 9-2
Carriage control values 8-50
Categories of data 4-14
Categories of data, editing, table

7-18
Character set:

ASCII C-4
COBOL 4-7
Prime 4-7

Character-strings, PICTURE 4-7
CHARACTERS option:

BLOCK CONTAINS clause
7-3,7-5

RECORD CONTAINS clause
7-3, 7-5

Class condition:

IF 8-17
simple 4-21

Classes of data 4-14
Clause, format notation 4-5
CLOSE (PRIMOS command) 2-9
CLOSE statement 8-8,12-3,13-3
Closing files 2-9
COBOL (PRIMOS command) 2-1
COBOL:

compiler 2-1
overview 1-1
reserved words C-2
under PRIMOS 1-4
verb index C-l

CODE-SET IS ASCII clause 7-3,
7-7

Coding rules 4-6
Coding sheet, COBOL, figure 4-6
Collating sequence, ASCII 4-7
Combined and negated combined

conditions 4-22
Combined condition, IF 8-18
COMMA clause 6-1,6-3
Comparisons, non-numeric 4-21
Comparisons, numeric 4-21
Compatibility, PRIMOS, COBOL

1-5
Compilation messages 2-1
Compilation, end of, messages 2-2
Compile-time error messages E-1
Compile-time warning messages

E-5
Compiler option:

-64V 2-5
-BINARY 2-5
-EXPLIST 2-6
-INPUT 2-4
-LISTING 2-5
-NOEXPLIST 2-6
-NOXREF 2-6
-SOURCE 2-5
-XREF 2-6

Compiler:
addressing mode 2-5
binary file 2-1,2-5,2-7,2-8
description 1-6
error messages 2-2, E-1
default file names 2-1, 2-5, 2-7,

2-8
file specifications, table 2-6
file types 2-7
generated files 2-7
I/O specifications 2-4
invoking 2-1
listing file 2-1,2-5,2-7,2-8
object file 2-1, 2-5, 2-7, 2-8
options 2-4
sourcefile 2-1,2-5,2-7,2-8
symbols. COBOL D-l
syntax 2-1

1 September 1981 X - l FDR3056

X INDEX

warning messages 2-3
Compiling 2-1
Complex conditions 4-22
Computational, data usage 4-15
Computational-3, data usage 4-15
COMPUTE statement 8-9
Concepts, fundamental COBOL

4-1
Condition evaluation rules 4-24
Condition symbols, COBOL D-l
Condition-name condition:

IF 8-17
simple 4-21

Condition-names, description 4-11
Conditional expressions 4-20
Conditional statements 8-2
Conditions, syntax table 4-23
Conditions:

abbreviated 4-23
complex 4-22
combined 4-22
negated 4-22. 4-24
simple 4-20

Configuration Section 6-1, 6-2
Connectives, definition 4-9
CONSOLE IS clause 6-1, 6-2
Conversion:

hexadecimal and decimal C-9
octal and decimal C-9

COPY statement 8-9
CORR option:

ADD 8-6
MOVE 8-22
SUBTRACT 8-43

CORRESPONDING option:
ADD 8-6
MOVE 8-22
SUBTRACT 8-43

COUNT IN option 8-44, 8-46
CR:

credit symbol 7-18
carriage return xi

CREATK dialog:
DAM files B-3
INDEXED files B-l
RELATIVE files B-3

Cross reference listing 2-6
CURRENCY SIGN IS clause 6-1,

6-3

D
DAM files, creating B-l

(See also Direct Access Method.
Data Division:

definition 7-1
example 7-31
sort module 11-1
table handling 10-1

Data levels 4-14

DATA RECORDS clause 7-3, 7-6
Data-name subscripting 10-6
Data-name/FILLER 7-12
Data-names, description 4-11
Data:

categories, description 4-14
categories, editing, table 7-18
categories, PICTURE clause

7-16
classes, description 4-14
representation 4-15
usage 4-15

DATE-COMPILED paragraph
5-1

DATE-WRITTEN paragraph 5-1
Debugging, COBOL verb:

ACCEPT 8-4
DISPLAY 8-12
EXHIBIT 8-14
READY TRACE 8-34
RESET TRACE 8-34

Decimal and hexadecimal conver
sion C-9

Decimal and octal conversion C-9
Decimal-point in PICTURE clause,

rules 7-16
DECIMAL POINT IS COMMA

clause 6-1, 6-3
DECLARATIVES section 8-1, 8-2,

8-48
Default compiler files 2-1, 2-5,

2-7, 2-8
DELETE statement 8-11,12-3.

13-3
DELIMITED BY:

STRING 8-40
UNSTRING 8-49

DELIMITER IN option 8-44. 8-45
DEPENDING ON option 8-16
Device specifications 6-5
Digit, format notations 4-5
Direct Access Method (DAM) A-1
Direct indexing 4-17, 10-4
Disk filenames 3-3
DISPLAY statement 8-12
Display, data usage 4-15
DIVIDE statement 8-12
Division:

Data 7-1
Environment 6-1
Identification 5-1
Procedure 8-1

Divisions, COBOL program,
summary 4-1

Documentation conventions xi
DOWN BY option 8-37, 10-7

Edit symbols, COBOL D-2

Editing:
character insertion 7-18
character suppression and

replacement 7-18, 7-21
PICTURE clause 7-18
sign control symbols, results,

table 7-19
signs 4-16
type, categories of data, table

7-18
EDITOR, description 1-6
Elementary item 4-14
Ellipsis, format notation xi, 4-5
ELSE option 8-16
END DECLARATIVES section 8-1
End of compilation messages 2-2
ENTER statement 8-14, 9-3
Environment Division 6-1, 12-1,

13-1
Environment:

batch job 1-5
interactive 1-5
phantom user 1-5

Error handling, SEG 3-1
Error messages:

CSIN 3-4
compile-time E-1
compiler 2-2
internal 2-3
run-time 3-4, E-6
types E-1

ERROR option 8-48
Errors using LABEL G-2
Evaluation, condition, rules 4-24
EXCEPTION option 8-48
EXECUTE (SEG command) 3-2
Executing loaded programs 3-2
Execution utility program, C$IN

3-2
EXHIBIT statement 8-14
EXIT PROGRAM statement 8-15,

9-3
EXIT statement 8-15
Expanded compiler listing 2-5, F-l
EXPLIST (compiler option) 2-6
Expressions:

arithmetic 4-18
conditional 4-20

EXTEND option, OPEN 8-24
Extensions to ANSI standard,

Prime 1-3
External decimal item 4-15

FD (file description) 7-3
Figurative constants 4-9
File assignments 3-2
File Description (FD) 7-2

~ "

^

^

FDR3056 X-2 1 September 1981

INDEX X

~

r

~

File names:
default compiler names 2-1, 2-2,

2-7, 2-8
in COBOL programs 4-11

File organization A-1
File Section, description 7-1, 7-2

sort module 11-1
File specifications, compiler, table

2-6
FILE STATUS clause 6-1, 6-4, 6-5,

6-6
indexed files 12-1, 12-3
relative files 13-1, 13-2

File status key definitions C-6
File types 2-7
File units, PRIMOS 2-7
FILE-CONTROL Paragraph:

sequential files 6-3
indexed files 12-1
relative files 13-1

Files:
compiler generated 2-1, 2-5, 2-7,

2-8
DAM. creating B-l
indexed 12-1
INDEXED, creating B-l
relative 13-1
relative, creating B-l
system H-l

FILLER options 4-11, 7-8, 7-12
Fixed insertion 7-19
Floating insertion 7-19
Format notation:

< 4-5
= 4-5
> 4-5
[] 4-5
clause 4-5
COBOL 4-4
digit 4-5
ellipsis 4-5
hyphen 4-5
key words 4-4
letter 4-5
lowercase words 4-5
multiple formats 4-5
programmer-defined words 4-5
punctuation 4-5
reserved words 4-4
statement 4-5
underlined words 4-4

Forms Management System 1-7
FORMS, description 1-7
FROM option:

ACCEPT 8-5
RELEASE 8-34, 11-2
REWRITE 8-35. 12-6, 13-5
SUBTRACT 8-42, 8-43
WRITE 12-9, 13-6

Functional processing
modules 1-2

Functions, compiler 2-4

Fundamental concepts of COBOL
4-1

G
GIVING option:

definition 8-3
ADD 8-6
DIVIDE 8-13
MULTIPLY 8-23
SORT 8-38, 11-3, 11-4, 11-6
SUBTRACT 8-43

GO TO statement 8-15
Group item 4-14

H
HELP facility for LABEL G-3
Hexadecimal addition table C-10
Hexadecimal and decimal

conversion C-9
HIGH VALUE(S), figurative

constant 4-9
Hyphen, format notation 4-5

I
l-O option. OPEN 8-24
I-O-CONTROL paragraph 6-2, 6-6
I/O specifications, compiler 2-4
ID Division 5-1
Identification Division 5-1
IF statement:

definition 8-16
class condition 8-17
combined condition 8-18
condition-name condition 8-17
nested 8-18
sign condition 8-18
simple condition 4-21

Imperative statements 8-2
Index item 4-15
Index name 4-17
Index, data usage 4-15
INDEXED BY option 4-17, 10-1,

10-4, 7-8, 7-15
INDEXED files:

creating B-l
CREATK dialog B-l

Indexed I/O module 1-3
Indexed Sequential Access

Method (ISAM) A-1
Indexed sequential files:

definition 12-1
Procedure Division 12-3

Indexing:
direct 4-17, 10-4
format 4-17, 10-5
relative 4-17, 10-4
restrictions 4-18
subscripting, description 10-3

INPUT (compiler option) 2-4
INPUT (OPEN clause) 8-24
INPUT PROCEDURE IS clause,

SORT 8-38. 11-3, 11-5
Input-Output Section, decription

6-1. 6-3
Input/output statements, permis

sible C-7
Insertion editing:

fixed 7-19
floating 7-19
simple 7-19
SDecial 7-19

INSPECT statement 8-19
INSTALLATION paragraph 5-1
Inter-program communication

module:
definition 1-4, 9-1
Procedure Division 9-2
sample programs 9-4

Interactive environment, descrip
tion 1-5

Interfaces, language, description
1-7

Internal decimal item 4-15
Internal error messages 2-3
INTO Option:

DIVIDE 8-13
READ 8-32, 12-4, 12-5, 13-3,

13-4
RETURN 8-35, 11-2
STRING 8-40
UNSTRING 8-44

INVALID KEY clause:
definition 13-2
DELETE 8-11, 12-3, 13-3
READ 8-33. 12-4. 12-5. 13-4
REWRITE 8-35, 12-6, 13-5
START 8-39, 12-6, 12-7, 13-5,

13-6
WRITE 8-49, 12-9, 13-6

I
JUST clause 7-8, 7-25
JUSTIFIED clause 4-16, 7-8, 7-25

K
KEY IS phrase:

OCCURS clause 7-8, 7-15, 10-1
READ 8-33, 12-4, 12-5
START 8-39, 12-6, 12-7, 13-5,

13-6
KEY option. SORT 8-38, 11-3, 11-5
Key file status definitions C-6
Key words:

definition 4-9
format notation 4-4

1 September 1981 X-3 FDR3056

X INDEX

LABEL (PRIMOS command):
arguments G-l
errors using G-2
format, expanded listing F-l
overview G-l
syntax errors G-2
system errors G-3

Label options, table 7-4
LABEL RECORDS clause 7-3. 7-4
Language interfaces, description

1-7
LEADING option, SIGN clause

7-8, 7-23
Letter, format notation 4-5
Level numbers, description 4-10
Level-number 01 7-10
Level-number 66 7-8, 7-11, 7-14
Level-number 77 7-10
Level-number 88 7-9. 7-10
Levels, data 4-14
Libraries, description 1-6
LIBRARY (SEG command) 3-1
Library module 1-4
Library:

non-shared, CSPRTN H-2
VCOBLB 3-1
VCOBLB, subroutines H-l

Linkage Section, description 7-1,
7-30, 9-1

LISTING (compiler option) 2-5
LISTING (PRIMOS command) 2-8
Listing file:

compiler 2-1, 2-5, 2-7, 2-8
spooling 2-5

Listing:
compiler, default 2-5, 2-8
compiler, expanded 2-5
compiler, regular 2-5
cross-reference 2-6
expanded, label format F-l

Literal subscripting 10-6
Literals:

non-numeric, decription 4-12
numeric, description 4-12

LOAD (SEG command) 3-1
LOAD COMPLETE 3-1
Loading programs 3-1
Logical operations, permissible

combinations 4-23
Logical operators, complex 4-22
LOW-VALUE(S), figurative

constant 4-9
Lowercase words, format notation

xi, 4-5

M
Mag tape, non-standard, using 3-3

Mag tape, standard, using 3-3
MAP (SEG command) 3-1
Messages:

compilation 2-1
end of compilation 2-2
error E-1
error, CSIN 3-4
error, compile-time E-1
error, compiler 2-2
error, run-time 3-4, E-6
error, types E-1
warning, compiler-time E-5
warning, compiler 2-3

MIDAS:
description 1-7
template, creating B-l

Mnemonic-names, description
4-12

Mode, addressing, compiler 2-5
Module:

indexed I/O 1-3
inter-program communication

1-4
library 1-4
nucleus 1-3
relative I/O 1-3
sequential I/O 1-3
sort 1-4
table handling 1-4

Modules, functional processing 1-2
MOVE ALL literal 8-22
MOVE statement 8-22
Moves, permissible C-8
Multi-dimensional table 10-6
Multiple conditions, complex 4-23
Multiple formats, format notation

4-5
Multiple Index Direct Access

Systems (See MIDAS.)
MULTIPLY statement 8-23

N
Names, qualification 4-13
Negated combined conditions 4-22
Negated combined conditions,

complex 4-24
Negated complex conditions 4-24
Negated simple conditions 4-22
Nested IF 8-18
NEXT option 8-32, 12-4, 12-5,

13-3, 13-4
NEXT SENTENCE option:

IF 8-16
SEARCH 8-36, 10-9

NOEXPLIST (compiler options)
2-6

Non-numeric comparisons, simple
4-21

Non-shared library, CSPRTN H-2

Non-standard mag tape, using 3-3
Normal loading 3-1
NOXREF (compiler option) 2-6
Nucleus module 1-3
Numeric comparisons, simple

4-21
Numeric conversions C-9
Numeric edited item, category

4-15
Numeric edited symbol D-2
Numeric edited PICTURE clause,

rules 7-16
Numeric item, category 4-14
Numeric literals, description 4-12
Numeric PICTURE clause, rules

7-16
NUMERIC test 4-21
NVCOBLB library 3-1

Object file, compiler 2-1, 2-5, 2-7,
2-8

OBJECT-COMPUTER paragraph
6-1, 6-2

OCCURS clause 7-8, 7-14. 10-1
Octal and decimal conversion C-9
OMITTED option, LABEL

RECORDS clause 7-3, 7-4
ON OVERFLOW option:

STRING 8-40, 8-42
UNSTRING 8-44, 8-47

ON SIZE ERROR option:
definition 8-4
ADD 8-6
COMPUTE 8-9
DIVIDE 8-13
MULTIPLY 8-23
SUBTRACT 8-42, 8-43

OPEN statement 8-23, 12-4, 13-3
OPEN statements vs. access modes

C-7
Operational signs 4-16
Operators:

arithmetic 4-10,4-18
logical 4-22
relational 4-10. 4-20

Optional words 4-9
Options, compiler 2-4
Organization of this book 1-1
ORGANIZATION clause:

sequential files 6-1, 6-4, 6-6
indexed files 12-1
relative files 13-1

OUTPUT option, OPEN, 8-24
OUTPUT PROCEDURE IS clause,

SORT 8-38, 11-3, 11-6
Output/input statements, permis

sible C-7

FDR3056 X-4 1 September 1981

INDEX X

r

'

S*

Overlapping operands 4-20
()vei view o| Primes GOBI)1. i-]
OVVXKK IS clause 7-;i. 7-ii

Packed decimal 4-15
Paragraph-names, description 4-12
Parenthesis:

as arithmetic operator 4- ih
as separator xi, 4-5

Parenthesis in conditions, permis
sible, combinations, table 4-23

Pathnames 2-1
PERFORM sequences, permissible.

figure 8-30
PERFORM statement:

definition 4-18, 8-24
one identifier varied, figure 8-30
two identifiers varied, figure

8-31
three identifiers varied, figure

8-32
Permissible input mil put state

ments C-7
Permissible mines C-8
PFMS option ti-f., 12-1. [3-1
Phantom user environment.

description 1-5
PIC clause 7-8, 7-15
PICTI IRE character-strings 4-7
PICTURE clause:

definition 4- Hi. 4-21, 7-8. 7-15
alphabetic, rules 7-1(>
alphanumeric, rules 7-16
alphanumeric edited, rules 7-Hi
dala. categories 7-Ifi
editing 7-18
examples, figure 7-22
numeric, rules 7- in
numeric edited, rules 7- Ifi
size, rules 7- Hi
symbols 7-17

Picture-strings 4-7
POINTER option:

STRING 8-40. 8-42
UNSTRING 8-44. 8-45. 8-46

Prime extensions to ANSI stan
dard 1-4

Prime File Management System
[See PFMS.)

PRIMOS command:
CLOSE 2-9
COBOL 2-1
LABEL O-l
LISTING 2-8
SEC] 3-1.3-2

PRIMOS:
COBOL under 1-4
COBOL, compatibility 1-5
COBOL, implementation 1-4

COBOL, operation l-l
file units 2-7

Procedure Division:
definition H-l
example 8-51
indexed files 12-3
inter-program communication

9-2
relative files 13-2
soil module I 1-2
table handling 10-7

PROCEDURE ON clause H-4H
Procedure statements 8-4
Procedure-names, description 4-12
PROCEED TO option 8-7
Program environments, list 1-5
Program statistics 2-3
Program statistics, example F-6
PROGRAM-ID paragraph 5-1
Programmer-defined words 4-it)
Programs, executing 3-2
Programs, loading 3-1
PRWFIL read 7-4
Punctuation rules 4-5
Punctuation symbols, COBOL D-l
Punctuation, formal notation 4-5

Q
Qualification of names 4-13
Qualification restrictions 4-18
QUIT [SKO command) :f-l
Ql IOTE(S), figurative constant 4-9

R
KIJAKC read 7-1
READ statement 8-32, 12-4. 13-3
READY TRACK statemenl 8-34
RECORD CONTAINS clause 7-;t,

7-5
Record Description 7-7
RECORD KEY clause 6-5, 12-1
RECORDS opium. BLOCK COX-

TAINS clause 7-3. 7-5
REDEFINES clause 7-8. 7-12
Reference tables. COBOL C-l
Related document 1-2
Relation condition, formal H-l7
Relation condition, simple 4-20
Relation operators 4-10. 4-20
Relative files:

definition 13-1
creating B-l
CREATK dialog B-3
Procedure Division 13-2

Relative I O moduli' l-:i
Relative indexing 4-17, 10-4

RELATIVE KEY clause 6-4. 13-1.
13-2

RELEASE statement 8-34. 11-2
REMARKS paragraph 5-1
RENAMES clause 7-», 7-13
REPLACING clause 8-19. 8-20
RESERVE clause ti-l. 6-4, B-5
Reserved words:

definition 4-9
lormal notation 4-4
list C-2
types 4-0
underlined, format notation 4-4

RESET TRACE statemenl 8-34
Resources, system, list I-H
RETURN statemenl 8-35
REWRITE statement 8-35. 12-(i,

13-5
ROUNDED option:

definition 8-3
ADD H-(i
COMPl'TL 8-9
DIVIDE 8-13
MULTIPLY 8-23
SUBTRACT 8-42, 8-43

Rounding results, chart 8-4
Runtime error messages 3-4. D-ti

SAM A-1
SAMF AREA clause B-2. 6-6
SAVE (SEG command) 3-1
SEARCH ALL stalement 8-36.

10-9. 10-11
SEARCH statement 4-18, 8-36,

10-9
Section-names, description 4-12
SECURITY paragraph 5-1
SEC (PRIMOS command) 3-1. 3-2
SEG command:

EXECUTE 3-2
LIBRARY 3-1
LOAD 3 1
MAP 3-1
QUIT 3-1
SAVE 3-1

SEC! utility:
description 1-fi
error handling 3-1
prompt = ;i-1

SELECT clause 6-1,6-4, 6-5
indexed files 12-1
relative files 13-1

SEPARATE CHARACTER option.
SIGN clause 7-8, 7-23

Separator characters, 4-5
Sequential Access Method (SAM)

A-1
Sequential I O module 1-3

1 September 19H1 X-; FDR3056

X INDEX

SET statement 4-18, 8-37, 10-7
valid operand combinations

10-9
SIGN clause 4-16, 7-8, 7-23
Sign condition, IF 8-18

simple 4-22
Sign control symbols, results,

editing, table 7-19
Sign representation, table 7-24
Sign symbols, COBOL D-l
Signs:

algebraic 4-16
editing 4-16
operational 4-16

Simple conditions 4-20
Simple insertion 7-19
Simple non-numeric comparisons

4-21
Simple numeric comparisons 4-21
Simple relational operators 4-20
SIZE ERROR option 8-4
Size, PICTURE clause, rules 7-16
Sort file description, sort module

11-1
Sort module:

definition 1-4, 11-1
Data Division 11-1
File Section 11-1
Procedure Division 11-2
sample program 11-7
sort file description 11-1

SORT statement 8-38, 11-3
SOURCE (compiler option) 2-5
Source file, compiler 2-1, 2-5, 2-7
SOURCE-COMPUTER paragraph

6-1, 6-2
SPACE(S), figurative constant 4-9
Special insertion 7-19
Special-character words 4-9
SPECIAL-NAMES paragraph 6-1,

6-2
Spooling the listing file 2-5
Standard mag tape, using 3-3
STANDARD option, LABEL

RECORDS clause 7-3, 7-4
START statement 8-39, 12-6, 13-5
Statements:

arithmetic 8-2
arithmetic, rules 8-3
COBOL verb; list C-l
conditional 8-2
format notation 4-5
imperative 8-2
procedure 8-4

Statistics:
example F-6
program 2-3

Status key, file C-6
STOP statement 8-40

STRING statement 8-40
Structure, COBOL program 4-2
Subroutines, VCOBLB library H-l
Subscripting:

data-name 10-6
definition 4-16, 10-5
format 4-17
indexing, description 10-3
literal 10-6
restrictions 4-18
value 10-6

SUBTRACT statement 8-42
Symbol combinations in arithmetic

expressions, table 4-18
Symbol, PICTURE clause

, 7-18
* 7-18
+ 7-18
- 7-18
. 7-18
/ 7-18
S 7-19
9 7-18
A 7-17
B 7-17
CR 7-18
DB 7-18
P 7-17
S 7-17
V 7-17
X 7-17
Z 7-17

Symbols:
arithmetic, COBOL D-l
COBOL D-l
coding, COBOL D-l
compiler, COBOL D-l
condition, COBOL D-l
edit, COBOL D-2
PICTURE clause 7-17
punctuation, COBOL D-l
sign control, results, editing,

table 7-19
sign, COBOL D-l

SYNC clause 7-8, 7-25
SYNCHRONIZED clause 7-8, 7-24
Syntax errors, LABEL G-2
Syntax, compiler 2-1
System errors, LABEL G-3
System files H-l
System resources 1-6

Table handling:
Data Division 10-1
definition 1-4, 10-1
Procedure Division 10-7

Table initialization 10-3
Tables, multi-dimensional 10-6
TALLYING clause 8-19, 8-20
TALLYING IN option 8-44, 8-46

Tape filename 3-3
Template, MIDAS, creating B-l
TO option:

ADD 8-6
MOVE 8-22
SET 8-37, 10-7

TRAILING option, SIGN clause
7-8, 7-23

u
Unary arithmetic operators 4-18,

D- l
UNCOMPRESSED option 7-3
Underlined reserved words, format

notation, 4-14
UNSTRING statement 8-44
UP BY option 8-37, 10-7
Uppercase viii
USAGE clause 4-15, 7-8, 7-22
USAGE IS INDEX clause 4-18
USE statement 8-1, 8-48
USING clause 8-1, 8-8, 9-2, 9-3
USING option, SORT 8-38, 11-3,

11-4, 11-5

V
VALUE clause 7-8, 7-27
VALUE OF FILE-ID clause 7-3, 7-6
VARYING clause:

PERFORM 8-25
SEARCH 8-36, 10-9

VCOBLB library:
definitions 3-1
subroutines H-l

Verb index, COBOL C-l

w
Warning messages, compiler 2-3,

E-5
WHEN clause, SEARCH 8-36, 10-9
WITH DUPLICATES option 6-5.

12-1
Word formation, COBOL 4-7
Words:

connectives 4-9
figurative constants 4-9
key 4-9
optional 4-9
programmer-defined 4-10
reserved 4-9
special-character 4-9

Working-Storage Section 7-1, 7-28
WRITE statemenl 8-49, 12-9, 13-6

X
XREF (compiler option) 2-6

FDR3056 X-6 1 September 1981

INDEX X

f
Zero suppression:

replacement with spaces 7-21
replacement with asterisks 7-21

ZERO(S). figurative constant 4-9
ZEROES, figurative constant 4-9

-

"

^

1 September 1981 X - 7 FDR3056

	Front Cover
	cor2-i
	cor2-ii
	cor1-i
	Title Page
	i
	Copyright
	ii
	Title Page
	iii
	Copyright
	iv
	Contents
	v
	vi
	vii
	viii
	Acknowledgement
	ix
	Prime Documentation Conventions
	xi
	Acknowledgement
	xii
	Section I
	Overview
	Chapter 1
	Overview of Prime's COBOL
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	Section II
	Language-Specific System Information
	Chapter 2
	Compiling the program
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	Chapter 3
	Loading and executing programs
	3-1
	3-2
	3-3
	3-4
	Section III
	COBOL Language Reference
	Chapter 4
	Fundamental concepts of COBOL
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	Chapter 5
	Identification division
	5-1
	5-2
	Chapter 6
	Environment division
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	Chapter 7
	Data division
	7-1
	7-2
	7-3
	7-4
	7-4A
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	Chapter 8
	Procedure division
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	8-31
	8-32
	8-33
	8-34
	8-35
	8-36
	8-37
	8-38
	8-39
	8-40
	8-41
	8-42
	8-43
	8-44
	8-45
	8-46
	8-47
	8-48
	8-49
	8-50
	8-51
	8-52
	8-53
	8-54
	8-55
	8-56
	Chapter 9
	Inter-program communication
	9-1
	9-2
	9-3
	9-4
	9-5
	Chapter 10
	Table handling
	10-1
	10-2
	10-3
	10-4
	10-5
	10-6
	10-7
	10-8
	10-9
	10-10
	10-11
	10-12
	Chapter 11
	Sort module
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	11-9
	Chapter 12
	Indexed sequential files
	12-1
	12-2
	12-3
	12-4
	12-5
	12-6
	12-7
	12-8
	12-9
	Chapter 13
	Relative file processing
	13-1
	13-2
	13-3
	13-4
	13-5
	13-6
	Section IV
	Appendices
	Appendix A
	File organization
	A-1
	Appendix B
	Creating ISAM and relative files - the MIDAS template
	B-1
	B-2
	B-3
	Appendix C
	Reference tables
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-6A
	C-7
	C-8
	C-9
	C-10
	Appendix D
	COBOL symbols
	D-1
	D-2
	D-3
	Appendix E
	Error messages
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	E-6A
	E-7
	Appendix F
	Expanded listing
	F-1
	F-2
	F-3
	F-4
	F-5
	F-6
	Appendix G
	LABEL command
	G-1
	G-2
	G-3
	Appendix H
	COBOL system files
	H-1
	H-2
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	X-7

